Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleTECHNOLOGY/APPLICATION

Evaluation of the BioVigilant® IMD-A™, A Novel Optical Spectroscopy Technology for the Continuous and Real-time Environmental Monitoring of Viable and Nonviable Particles. Part I. Review of the Technology and Comparative Studies with Conventional Methods

Michael J. Miller, Horatio Lindsay, Rene Valverde-Ventura and Michael J. O'Conner
PDA Journal of Pharmaceutical Science and Technology May 2009, 63 (3) 245-258;
Michael J. Miller
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: mjm@microbiologyconsultants.com
Horatio Lindsay
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rene Valverde-Ventura
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael J. O'Conner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    United States Pharmacopeia, USP 31-NF26. General Information Chapter 〈1116〉 Microbiological Evaluation of Cleanrooms and Other Controlled Environments. U.S. Pharmacopeial Convention: Rockville, MD, 2009.
  2. 2.↵
    Food and Drug Administration (FDA). Guidance for Industry: Sterile Drug Products Produced by Aseptic Processing—Current Good Manufacturing Practice; U.S. Department of Health and Human Services, FDA: Rockville, 2004. Available at http://www.fda.gov/cber/gdlns/steraseptic.pdf.
  3. 3.↵
    European Commission. EU Guidelines to Good Manufacturing Practice, Annex 1. Manufacture of Sterile Medicinal Products; EudraLex, European Union: Brussels, Belgium, 2008. Available at http://ec.europa.eu/enterprise/pharmaceuticals/eudralex/vol-4/pdfs-en/2008_02_12_gmp_annex1.pdf.
  4. 4.↵
    1. Moldenhauer J.
    Environmental Monitoring, A Comprehensive Handbook; Moldenhauer J. Ed.; DHI Publishing: River Grove, IL and Parenteral Drug Association (PDA): Bethesda, MD, 2007; Vol. 1 and 2.
  5. 5.↵
    1. Prince R.
    1. Miller M. J.
    Rapid Microbiological Methods. In Microbiology in Pharmaceutical Manufacturing,; Prince R. Ed.; DHI Publishing: River Grove, IL and PDA: Bethesda, MD, 2008; Vol. 2, pp 171– 221.
    OpenUrl
  6. 6.
    1. Roszak D. B.,
    2. Colwell R. R.
    Survival strategies of bacteria in the natural environment. Microbiol. Rev. 1987, 51, 365– 379.
    OpenUrlFREE Full Text
  7. 7.
    1. Colwell R. R.,
    2. Brayton P. R.,
    3. Grimes D. J.,
    4. Roszak D. B.,
    5. Huq S. A.,
    6. Palmer L. M.
    Viable but non-culturable Vibrio cholerae and related pathogens in the environment: implications for release of genetically engineered microorganisms. Biotechnol. 1985, 3, 817– 820.
    OpenUrl
  8. 8.
    1. Colwell R. R.,
    2. Brayton P.,
    3. Herrington D.,
    4. Tall B.,
    5. Huq A.,
    6. Levine M. M.
    Viable but non-culturable Vibrio cholerae 01 revert to a cultivable state in the human intestine. World J. Microbiol. Biotechnol. 1996, 12, 28– 31.
    OpenUrlCrossRef
  9. 9.
    1. Nagarkar P. P.,
    2. Ravetkar S. D.,
    3. Watve M. G.
    Oligophilic bacteria as tools to monitor aseptic pharmaceutical production units. App. Env. Microbiol. 2001, 67, 1371– 1374.
    OpenUrlAbstract/FREE Full Text
  10. 10.
    1. Williams R. H.,
    2. Ward E.,
    3. McCartney H. A.
    Methods for integrated air sampling and DNA analysis for detection of airborne fungal spores. App. Env. Microbiol. 2001, 67, 2453– 2459.
    OpenUrlAbstract/FREE Full Text
  11. 11.
    1. Radosevich J. L.,
    2. Wilson W. J.,
    3. Shinn J. H.,
    4. DeSantis T. Z.,
    5. Andersen G. L.
    Development of a high-volume aerosol collection system for the identification of air-borne micro-organisms. Soc. App. Microbiol. 2002, 34, 162– 167.
    OpenUrl
  12. 12.
    1. Amann R. I.,
    2. Ludwig W.,
    3. Schleifer K. H.
    Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 1995, 59, 143– 169.
    OpenUrlAbstract/FREE Full Text
  13. 13.
    1. Hugenholtz P.,
    2. Goebel B. M.,
    3. Pace N. R.
    Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 1998, 180, 4765– 4774.
    OpenUrlFREE Full Text
  14. 14.
    1. Hussong D.,
    2. Colwell R. R.,
    3. O'Brien M.,
    4. Weiss E.,
    5. Pearson A. D.,
    6. Weiner R. M.,
    7. Burge W. D.
    Viable Legionella pneumophila not detectable by culture on agar media. Biotechnol. 1987, 5, 947– 950.
    OpenUrl
  15. 15.↵
    1. Alvarez A. J.,
    2. Buttner M. P.,
    3. Stetzenbach L. D.
    PCR for bioaerosol monitoring: sensitivity and environmental interference. App. Env. Microbiol. 1995, 61, 3639– 3644.
    OpenUrlAbstract/FREE Full Text
  16. 16.
    1. Bhupathiraju V. K.,
    2. Hernandez M.,
    3. Krauter P.,
    4. Alvarez-Cohen L.
    A new direct microscopy-based method for evaluating in-situ bioremediation. J. Hazard. Mat. 1999, 67, 299– 312.
    OpenUrlPubMed
  17. 17.↵
    1. Macher J. M.,
    2. First M. W.
    Reuter centrifugal air sampler: measurement of effective airflow rate and collection efficiency. App. Env. Microbiol. 1983, 45, 1960– 1962.
    OpenUrlAbstract/FREE Full Text
  18. 18.↵
    1. Jensen P. A.,
    2. Todd W. F.,
    3. Davis G. N.,
    4. Scarpino P. V.
    Evaluation of eight bioaerosol samplers challenged with aerosols of free bacteria. Am. Ind. Hyg. Assoc. J. 1992, 53, 660– 667.
    OpenUrlPubMed
  19. 19.↵
    1. Yao M.,
    2. Mainelis G.
    Investigation of cut-off sizes and collection efficiencies of portable microbial samplers. Aerosol Sci. Technol. 2006, 40, 595– 606.
    OpenUrl
  20. 20.↵
    1. Yao M.,
    2. Mainelis G.
    Use of portable microbial samplers for estimating inhalation exposure to viable biological agents. J. Exposure Sci. Environ. Epidemiol. 2007, 17, 31– 38.
    OpenUrl
  21. 21.↵
    1. Miller M. J.
    Rapid microbiological methods and FDA's initiatives for process analytical technology and pharmaceutical cGMPs for the 21st century: a risk-based approach. Am. Pharm. Rev. 2005, 8, 104– 107.
    OpenUrl
  22. 22.↵
    1. Miller M. J.
    Rapid microbiological methods for a new generation. Pharm. Manufac. 2006, 5, 14– 23.
    OpenUrl
  23. 23.↵
    1. Miller M. J.
    1. Miller M. J.
    The Impact of Process Analytical Technology (PAT), cGMPs for the 21st Century and Other Regulatory and Compendial Initiatives on the Implementation of Rapid Microbiological Methods. In Encyclopedia of Rapid Microbiological Methods—Volume 1; Miller M. J. Ed.; DHI Publishing: River Grove, IL and PDA: Bethesda: PDA, 2005; pp 195– 215.
  24. 24.↵
    1. Miller M. J.
    1. Jiang J. P.
    Instantaneous Microbial Detection Using Optical Spectroscopy. In Encyclopedia of Rapid Microbiological Methods—Volume 3; Miller M. J. Ed. DHI Publishing: River Grove, IL and PDA: Bethesda, MD, 2005; pp 121– 141.
  25. 25.↵
    1. Bhupathiraju V. K.,
    2. Varnau B.,
    3. Nelson J. R.,
    4. Jiang J. P.,
    5. Bolotin C.
    Evaluation of an instantaneous microbial detection system in controlled and cleanroom environments. BioPharm Int. 2007, 20, 35– 46.
    OpenUrl
  26. 26.↵
    1. Zhang Y.
    Indoor Air Quality Engineering. CRC Press: Boca Raton, FL, 2004.
  27. 27.↵
    1. Juozaitis A.,
    2. Willeke K.,
    3. Grinshpun S. A.,
    4. Donnelly J.
    Impaction onto a glass slide or agar versus impingement into a liquid for the collection and recovery of airborne microorganisms. App. Env. Microbiol. 1994, 60, 861– 870.
    OpenUrlAbstract/FREE Full Text
  28. 28.↵
    1. Jones H. G.
    Plants and Microclimate. A Quantitative Approach to Environmental Plant Physiology; Cambridge University Press: Cambridge, UK, 1992.
  29. 29.↵
    1. Buttner M. P.,
    2. Stetzenbach L. D.
    Evaluation of four aerobiological sampling methods for the retrieval of aerosolized Pseudomonas syringac. App. Env. Microbiol. 1991, 57, 1268– 1270.
    OpenUrlAbstract/FREE Full Text
  30. 30.↵
    1. Fierer N.,
    2. Liu Z.,
    3. Rodríguez-Hernández M.,
    4. Knight R.,
    5. Henn M.,
    6. Hernandez M. T.
    Short-term temporal variability in airborne bacterial and fungal populations. App. Env. Microbiol. 2008, 74, 200– 207.
    OpenUrlAbstract/FREE Full Text
  31. 31.↵
    1. Heidelberg J. F.,
    2. Shahamat M.,
    3. Levin M.,
    4. Rahman I.,
    5. Stelma G.,
    6. Grim C.,
    7. Colwell R. R.
    Effect of aerosolization on culturability and viability of Gram-negative bacteria. App. Env. Microbiol. 1997, 63, 3585– 3588.
    OpenUrlAbstract/FREE Full Text
  32. 32.↵
    1. Miller M. J.
    1. Homesley P. H.
    The RBD 3000 Rapid Bacterial Enumeration System as an Alternative to Traditional Pour Plate Enumeration. In Encyclopedia of Rapid Microbiological Methods—Volume 2; Miller M. J. Ed.; DHI Publishing: River Grove, IL and PDA: Bethesda, MD, 2005; pp 417– 435.
  33. 33.↵
    1. Miller M. J.
    1. McCormick P. J.,
    2. Norton S. E.,
    3. Costanzo S. P.
    Validation of the ScanRDI for Purified Water Testing. In Encyclopedia of Rapid Microbiological Methods—Volume 2; Miller M. J. Ed.; DHI Publishing: River Grove, IL and PDA: Bethesda, MD, 2005; pp 317– 338.
  34. 34.↵
    1. Ljungqvist B.,
    2. Reinmüller B.
    Airborne viable particles and total number of airborne particles: Comparative studies of active air sampling. PDA J. Pharm. Sci. Techol. 2000, 54 ( 2), 112– 116.
    OpenUrl
  35. 35.↵
    1. Miller M. J.
    Evaluation of a continuous and instantaneous viable and nonviable environmental monitoring technology based on optical spectroscopy. 2008 PDA Annual Meeting—Science Driven Manufacturing: The Application of Emerging Technologies. Colorado Springs, CO; April 15, 2008.
  36. 36.↵
    1. Miller M. J.
    Continuous and instantaneous viable and nonviable air monitoring using optical spectroscopy. ISPE 17th Annual Barrier Isolation Technology Forum: Innovation Updates and New Case Studies. Washington, DC; June 4, 2008.
  37. 37.↵
    1. Buttner M. P.,
    2. Stetzenbach L. D.
    Monitoring airborne fungal spores in an experimental indoor environment to evaluate sampling methods and the effects of human activity on air sampling. App. Env. Microbiol. 1993, 59, 219– 226.
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 63 (3)
PDA Journal of Pharmaceutical Science and Technology
Vol. 63, Issue 3
May/June 2009
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Evaluation of the BioVigilant® IMD-A™, A Novel Optical Spectroscopy Technology for the Continuous and Real-time Environmental Monitoring of Viable and Nonviable Particles. Part I. Review of the Technology and Comparative Studies with Conventional Methods
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
3 + 8 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Evaluation of the BioVigilant® IMD-A™, A Novel Optical Spectroscopy Technology for the Continuous and Real-time Environmental Monitoring of Viable and Nonviable Particles. Part I. Review of the Technology and Comparative Studies with Conventional Methods
Michael J. Miller, Horatio Lindsay, Rene Valverde-Ventura, Michael J. O'Conner
PDA Journal of Pharmaceutical Science and Technology May 2009, 63 (3) 245-258;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Evaluation of the BioVigilant® IMD-A™, A Novel Optical Spectroscopy Technology for the Continuous and Real-time Environmental Monitoring of Viable and Nonviable Particles. Part I. Review of the Technology and Comparative Studies with Conventional Methods
Michael J. Miller, Horatio Lindsay, Rene Valverde-Ventura, Michael J. O'Conner
PDA Journal of Pharmaceutical Science and Technology May 2009, 63 (3) 245-258;
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials
    • Methods
    • Results and Discussion
    • Summary
    • Footnotes
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Challenges Encountered in the Implementation of Bio-Fluorescent Particle Counting Systems as a Routine Microbial Monitoring Tool
  • Environmental and Personnel Monitoring Programs--A Risk-Based Case Study of Cutibacterium acnes
  • Investigation of the Detection Ability of an Intrinsic Fluorescence-Based Bioaerosol Detection System for Heat-Stressed Bacteria
  • Google Scholar

More in this TOC Section

  • Mechanical Container Closure Integrity Test: A Method for Cartridge Systems
  • A Container Closure Integrity Test Method for Vials Stored at Cryogenic Conditions Using Headspace Oxygen Analysis
  • Best Practices for Microbial Challenge In-Use Studies to Evaluate the Microbial Growth Potential of Parenteral Biological Products; Industry and Regulatory Considerations
Show more Technology/Application

Similar Articles

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire