Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Article CommentaryCOMMENTARY

Reducing Hospital-Acquired Infection by Quantitative Risk Modeling of Intravenous Bag Preparation

Edward C. Tidswell, Jim Rockwell and Marc-Oliver Wright
PDA Journal of Pharmaceutical Science and Technology March 2010, 64 (2) 82-91;
Edward C. Tidswell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jim Rockwell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marc-Oliver Wright
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

Vascular access of patients by peripheral and central venous catheters for the delivery of sterile or aseptically manufactured parenterals is commonly regarded as one of the major causes of blood stream infections. Rigorous evaluation and management of the risks of microbial infection originating from the administration of aseptically manufactured therapies remain imperative to reduce patient infection risks. Healthcare clinicians are continually faced with choosing intravenous (IV) parenteral administration strategies to minimize patient blood stream infection risk. Data facilitating such decisions are often difficult to obtain. Analysis and interpretation of the available, reported hospital infection rate data to evaluate medical device- and therapy-associated infection rates are constrained by the variability and uncertainty associated with each individual administration scenario. Moreover, clinical trials quantifying infection risk are constrained by their practicality, cost, and the control of the exacting requisite trial criteria. Furthermore, it is ethically inappropriate to systematically conduct clinical evaluations incorporating conditions that do not favor the best possible patient outcomes. Quantitative risk modeling (QRM) is a unique tool offering an alternative and affective means of assessing design and clinical use in the context of the clinical environment on medical device and combinatorial therapy infection rates.

Here, we report the generation of QRMs and the evaluation of manual admixing IV bags for use in IV administration sets upon patient infection rates. The manual admixing of IV bags was assessed for the opportunity and risk of microbial ingress accessing across the sterile barrier during clinical preparation and contaminating the IV solution. The risk of microbial contamination was evaluated under (a) ISO 5 compounding conditions adopting ideal aseptic technique (in compliance with USP 〈797〉) and (b) realistic worst-case point-of-care conditions (typically found in hospital wards). These choices of conditions encompass the complete spectrum of clinical environments encountered in the hospital. The evaluation estimated contamination rates ranged from <2.2 ppm (2.2 contaminated units in every million uses) to 2.9% (29 contaminated units in every 1000 uses), contingent upon the clinical environment. QRM permits the swift probabilistic evaluation of contamination rates providing the healthcare professional with data to make an informed choice of medical devices and a preparation strategy in their precise clinical context, reducing hospital acquired infections for optimal clinical patient outcomes.

  • Quantitative risk modeling
  • IV bags
  • IV administration of parenterals
  • Hospital-acquired infections
  • © PDA, Inc. 2010
View Full Text

PDA members receive access to all articles published in the current year and previous volume year. Institutional subscribers received access to all content. Log in below to receive access to this article if you are either of these.  

If you are neither or you are a PDA member trying to access an article outside of your membership license, then you must purchase access to this article (below). If you do not have a username or password for JPST, you will be required to create an account prior to purchasing. 

Full issue PDFs are for PDA members only.

Note to pda.org users

The PDA and PDA bookstore websites (www.pda.org and www.pda.org/bookstore) are separate websites from the PDA JPST website. When you first join PDA, your initial UserID and Password are sent to HighWirePress to create your PDA JPST account. Subsequent UserrID and Password changes required at the PDA websites will not pass on to PDA JPST and vice versa. If you forget your PDA JPST UserID and/or Password, you can request help to retrieve UserID and reset Password below.

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

patientACCESS

patientACCESS - Patients desiring access to articles

Full issue PDFs are for PDA members only. You can join PDA at www.pda.org. 

PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 64 (2)
PDA Journal of Pharmaceutical Science and Technology
Vol. 64, Issue 2
March/April 2010
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Reducing Hospital-Acquired Infection by Quantitative Risk Modeling of Intravenous Bag Preparation
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
2 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Reducing Hospital-Acquired Infection by Quantitative Risk Modeling of Intravenous Bag Preparation
Edward C. Tidswell, Jim Rockwell, Marc-Oliver Wright
PDA Journal of Pharmaceutical Science and Technology Mar 2010, 64 (2) 82-91;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Reducing Hospital-Acquired Infection by Quantitative Risk Modeling of Intravenous Bag Preparation
Edward C. Tidswell, Jim Rockwell, Marc-Oliver Wright
PDA Journal of Pharmaceutical Science and Technology Mar 2010, 64 (2) 82-91;
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Methods
    • Results and Discussion
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Aseptic simulation test challenged with microorganisms for validation of pharmacy operators
  • Google Scholar

More in this TOC Section

  • Challenges and Solutions to Manufacturing of Low-Viscosity, Ultra-High Concentration IgG1 Drug Products: From Late Downstream Process to Final Fill Finish Processing
  • Retrospective Evaluation of Cycled Resin in Viral Clearance Studies - A Multiple Company Collaboration - Post ICH Q5A(R2) Review
  • Addressing Medical Device Extractables and Leachables via Non-Target Analysis (NTA); The Analytical Evaluation Threshold (AET) and Quantitation
Show more Commentary

Similar Articles

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire