Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleResearch

Formulation Development of Ambroxol Hydrochloride Soft Gel with Application of Statistical Experimental Design and Response Surface Methodology

Mahesh Dabhi, Mukesh Gohel, Rajesh Parikh, Navin Sheth and Stavan Nagori
PDA Journal of Pharmaceutical Science and Technology January 2011, 65 (1) 20-31;
Mahesh Dabhi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: mrdabhi@gmail.com
Mukesh Gohel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rajesh Parikh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Navin Sheth
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stavan Nagori
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Lewis G. A.,
    2. Mathiue D.,
    3. Phan-Tan-Luu R.
    Pharmaceutical Experimental Design; Marcel Dekker, Inc.: New York, 1999; p 112.
  2. 2.↵
    1. Kaushik D.,
    2. Dureja H.,
    3. Saini T. R.
    Mouth dissolving tablets: a review. Indian Drugs 2004, 41 (4), 187–193.
    OpenUrl
  3. 3.↵
    1. Habib W.,
    2. Khanhari R.,
    3. Hontz J.
    Fast-dissolve drug delivery systems. Crit. Rev. Ther. Drug Carrier Sys. 2000, 17 (1), 61–72.
    OpenUrlPubMed
  4. 4.↵
    1. Bertelsen P.,
    2. Hansen N. G.,
    3. Ruckendorfer H.,
    4. Itai S.
    Quick Release Pharmaceutical Compositions of Drug Substances. U.S. Patent 6,713,089, 2004.
  5. 5.↵
    1. Abu-Izza K. A.,
    2. Li V. H.,
    3. Look J. L.,
    4. Parr G. D.,
    5. Schineller G. A.
    Fast Dissolving Tablet. U.S. Patent 6,733,751, 2004.
  6. 6.↵
    1. Bogner R. H.,
    2. et al
    . Fast-dissolving tablets. Welcome to US pharmacist, 2003.
  7. 7.↵
    1. Watanabe Y.,
    2. Koizumi K.,
    3. Zama Y.,
    4. Kiriyama M.,
    5. Matsumoto Y.,
    6. Matsumoto M.
    New compressed tablet rapidly disintegrating in saliva in the mouth using crystalline cellulose and a disintegrant. Biol. Pharm. Bull. 1995, 18 (9), 1308–1310.
    OpenUrlPubMed
  8. 8.↵
    1. Koizumi K.,
    2. Watanabe Y.,
    3. Morita K.,
    4. Utoguchi N.,
    5. Matsumoto M.
    New method of preparing high porosity rapidly saliva soluble compressed tablets using mannitol with camphor, a subliming material. Int. J. Pharm. 1997, 152 (1), 127–131.
    OpenUrl
  9. 9.↵
    1. Virley P.,
    2. Yarwood R. J.
    Zydis—a novel, fast dissolving dosage form. Manuf. Chem. 1990, 36, 36–37.
    OpenUrl
  10. 10.↵
    1. Ishikawa T.,
    2. Watanabe Y.,
    3. Utoguchi N.,
    4. Matsumoto M.
    Preparation and evaluation of tablets rapidly disintegrating in saliva containing bitter taste masked granules by the compression method. Chem. Pharm. Bull. 1999, 47 (10), 1451–1454.
    OpenUrlPubMed
  11. 11.↵
    1. Rajyaguru T. H.,
    2. Indurwade N. H.,
    3. Nahkhat P. D.
    Novel approach—fast dissolving tablets. Indian Drugs 2002, 39 (8), 405–409.
    OpenUrl
  12. 12.↵
    1. Nadendla R. R.,
    2. Sudhakar G.,
    3. Srinath N.
    Current status of dispersible dosage forms. Int. J. Pharma. Excip. 2002, 2, 25–28.
    OpenUrl
  13. 13.↵
    www.cpkelco.com.
  14. 14.↵
    Gellan Gum for Pharmaceutical Applications rev. 10/99, Kelco Biopolymers Gellan Gum Gel (G3) A New Self-Lubricated, Easy to Swallow, Oral Dosage Form rev. 10/99, Kelco Biopolymers, pformulate/01/25/2004.
  15. 15.↵
    1. Sworn G.,
    2. Kasapis S.
    Effect of conformation and molecular weight of co-solute on the mechanical properties of gellan gum gels. Food Hydrocolloids 1998, 12 (3), 283–290.
    OpenUrl
  16. 16.↵
    Kelcogel® Gellan Gum: A Multifunctional Gelling Agent. San Diego: CP Kelco, www.cpkelco.com, accessed December 1, 2005.
  17. 17.↵
    1. Fialho A. M.,
    2. Martins L. O.,
    3. Donval M. L.,
    4. Jorge H. L.,
    5. Michael J. R.,
    6. Andrew J. J.,
    7. Victor J. M.,
    8. Isabel S.
    Structures and properties of gellan polymers produced by Sphingomonas paucimobilis ATCC 31461 from lactose compared with those produced from glucose and from cheese whey. Appl. Environ. Microbiol. 1999, 65 (6), 2485–2491.
    OpenUrlAbstract/FREE Full Text
  18. 18.↵
    1. Jansson P. E.,
    2. Lindberg B.,
    3. Sandford P. A.
    Structural studies of gellan gum an extracellular polysaccharide elaborated by Pseudomonas elodea. Carbohydr. Res. 1983, 124 (1), 135–139.
    OpenUrlCrossRef
  19. 19.↵
    1. Deasy P. B.,
    2. Quigley J.
    Rheological evaluation of deacylated gellan gum (Gelrite) for pharmaceutical use. Int. J. Pharm. 1991, 73 (2), 117–123.
    OpenUrl
  20. 20.↵
    1. Bayarri S.,
    2. Rivas I.,
    3. Costell E.,
    4. Duran L.
    Diffusion of sucrose and aspartame in kappa-carrageenan and gellan gum gels. Food Hydrocolloids 2001, 15 (1), 67–73.
    OpenUrl
  21. 21.↵
    Kelcogel® Gellan Gum: A Multifunctional Gelling Agent. San Diego: CP Kelco, www.cpkelco.com, accessed on December 1, 2005.
  22. 22.↵
    www.pformulate.com.
  23. 23.↵
    1. Grasdalen H.,
    2. Smidsrod O.
    Gelation of gellan gum. Carbohydr. Polym. 1987, 7 (5), 371–393.
    OpenUrl
  24. 24.↵
    1. Nowak D.,
    2. Antczak A.,
    3. Król M.,
    4. Bialasiewicz P.,
    5. Pietras T.
    Antioxidant properties of ambroxol. Free Radic. Biol. Med. 1994, 16 (4), 517–522.
    OpenUrlCrossRefPubMed
  25. 25.↵
    1. Ericsson C. H.,
    2. Juhasz J.,
    3. Jöhnson E.,
    4. Mossberg B.
    Ambroxol and simple chronic bronchitis: effects on subjective symptoms and ventilatory function. Respiration 1987, 51 (Suppl 1), 33–36.
    OpenUrlPubMed
  26. 26.↵
    1. Guyatt G. H.,
    2. Townsend M.,
    3. Kazim F.,
    4. Newhouse M. T.
    A controlled trial of ambroxol in chronic bronchitis. Chest. 1987, 92 (4), 618–620.
    OpenUrlCrossRefPubMedWeb of Science
  27. 27.↵
    1. Ratjen F.,
    2. Wonne R.,
    3. Posselt H. G.,
    4. Stover B.,
    5. Hofmann D.,
    6. Bender S. W.
    A double-blind placebo controlled trial with oral ambroxol and N-acetylcysteine for mucolytic treatment in cystic fibrosis. Eur. J. Pediatr. 1985, 144 (4), 374–378.
    OpenUrlCrossRefPubMedWeb of Science
  28. 28.↵
    1. Vergin H.,
    2. Bishop-Freundling G. B.,
    3. Micka M.,
    4. Nitsche V.,
    5. Strobel K.,
    6. Matzkies F.
    Untersuchungen zur pharmakokinetik und bioaquivalenz unterschiedlicher darreichungs formenvon ambroxol. Arzneim-Forsch./Drug Res. 1985, 35, 1591–1595.
    OpenUrl
  29. 29.↵
    1. Basak S. C.,
    2. Jayakumar Reddy B. M.,
    3. Lucas Mani K. P.
    Formulation and release behaviour of sustained release ambroxol hydrochloride HPMC matrix tablet. Indian J. Pharm. Sci. 2006, 68 (5), 594–598.
    OpenUrl
  30. 30.↵
    1. Grasdalen H.,
    2. Smidsrod O.
    Gelation of gellan gum. Carbohydr. Polym. 1987, 7 (5), 371–393.
    OpenUrl
  31. 31.↵
    1. Horinaka J.,
    2. Kani K.,
    3. Hori Y.,
    4. Maeda S.
    Effect of pH on the conformation of gellan chains in aqueous systems. Biophys. Chem. 2004, 111 (3), 223–227.
    OpenUrlPubMed
  32. 32.↵
    1. Rowe R. C.,
    2. Sheshkey P. J.,
    3. Weller P. J.
    Handbook of Pharmaceutical Excepients, 4th ed.; Pharmaceutical Press: London, Chicago, 2003.
  33. 33.↵
    1. Camelin I.,
    2. Lacroix C.,
    3. Paquin C.,
    4. Prevost H.,
    5. Cachon R.,
    6. Divies C.
    Effect of chelatants on gellan gel rheological properties and setting temperature for immobilization of living bifidobacteria. Biotechnol. Prog. 1993, 9 (3), 291–297.
    OpenUrlCrossRefPubMed
  34. 34.↵
    1. El-Kamel A.,
    2. Al-Dosari H.,
    3. Al-Jenoobi F.
    Environmentally responsive ophthalmic gel formulation of carteolol hydrochloride. Drug Deliv. 2006, 13 (1), 55–59.
    OpenUrlPubMed
  35. 35.↵
    1. Sworn G.,
    2. Kasapis S.
    The use of Arrhenius and WLF kinetics to rationalize the mechanical spectrum in high sugar gellan system. Carbohydr. Res. 1998, 309, 353–361.
    OpenUrl
  36. 36.↵
    1. Pokharkar V. B.
    Taste Masking of Pharmaceuticals, available at www.pharmainfo.net, accessed 2005.
  37. 37.↵
    1. Gaspar C.,
    2. Laureano O.,
    3. Sousa I.
    Production of reduced-calorie grape juice jelly with gellan, xanthan and locust bean gums: sensory and objective analysis of texture. Z. Lebensm. Unters. Forsch A 1998, 206 (3), 169–174.
    OpenUrl
  38. 38.↵
    1. Mashimo S.,
    2. Shinyashiki N.,
    3. Matsumura Y.
    Water structure in gellan gum-water system. Carbohydrate Polymers 1996, 30 (2–3), 141–144.
    OpenUrl
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 65 (1)
PDA Journal of Pharmaceutical Science and Technology
Vol. 65, Issue 1
January/February 2011
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Formulation Development of Ambroxol Hydrochloride Soft Gel with Application of Statistical Experimental Design and Response Surface Methodology
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
9 + 4 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Formulation Development of Ambroxol Hydrochloride Soft Gel with Application of Statistical Experimental Design and Response Surface Methodology
Mahesh Dabhi, Mukesh Gohel, Rajesh Parikh, Navin Sheth, Stavan Nagori
PDA Journal of Pharmaceutical Science and Technology Jan 2011, 65 (1) 20-31;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Formulation Development of Ambroxol Hydrochloride Soft Gel with Application of Statistical Experimental Design and Response Surface Methodology
Mahesh Dabhi, Mukesh Gohel, Rajesh Parikh, Navin Sheth, Stavan Nagori
PDA Journal of Pharmaceutical Science and Technology Jan 2011, 65 (1) 20-31;
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • 1. Introduction
    • 2. Material and Methods
    • 3. Results and Discussion
    • 4. Concluding Remarks
    • Conflict of Interest Declaration
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Quantitative and Qualitative Evaluation of Microorganism Profile Identified in Bioburden Analysis in a Biopharmaceutical Facility in Brazil: Criteria for Classification and Management of Results
  • Evaluation of Extreme Depyrogenation Conditions on the Surface Hydrolytic Resistance of Glass Containers for Pharmaceutical Use
  • A Holistic Approach for Filling Volume Variability Evaluation and Control with Statistical Tool
Show more Research

Similar Articles

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire