Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleResearch

In Situ Phase-Transited Asymmetric Membrane Capsules: A Means for Achieving Delayed and Osmotic Release for pH Solubility-Dependant Drugs

Anil K. Philip and Betty Philip
PDA Journal of Pharmaceutical Science and Technology January 2011, 65 (1) 32-41;
Anil K. Philip
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: philip@unizwa.edu.om philipanil23@yahoo.co.in
Betty Philip
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

In the present study, an in situ nondisintegrating polymeric capsular system in achieving delayed as well as improved osmotic flow for the model drug cefadroxil was developed. In situ formed asymmetric membrane capsule was prepared by precipitation of the asymmetric membrane (AM) on the walls of conventional hard gelatin capsules in fabricated glass holders via a dry phase inversion process. The effect of different formulation variables were studied based on a 23 factorial design as one variable changed from one level to another, namely, the level of osmogen, ethylcellulose, and pore former, apart from studying the effect of varying osmotic pressure and agitation intensity on drug release. Scanning electron microscopy showed an outer, dense, non-porous region and an inner, lighter, porous region for the prepared AM inside, and a gelatin layer outside. Statistical testing (Dunnett multiple comparison test) was applied for in vitro drug release (n = 6) at P < 0.05. The best formulation in the design closely corresponded to the extra design checkpoint formulation by a similarity (f2) value of 96.18. The drug release was independent of the agitation intensity but dependent on the osmotic pressure of the dissolution media. The release kinetics followed the Higuchi model, and the mechanism of release was Fickian diffusion.

LAY ABSTRACT: The asymmetric membrane capsule (AMC) is a unique drug delivery system that looks like a conventional hard gelatin capsule but has significant advantages over it. In the present study, a system was made that had an outer disintegrating hard gelatin capsule and an inner nondisintegrating polymeric capsular system for delivering a model drug cefadroxil. The inner nondisintegrating polymeric capsular system was the AMC, which was prepared by precipitation of the asymmetric membrane (AM) on the walls of conventional hard gelatin capsules in fabricated glass holders via a dry phase inversion process. The effect of different formulation variables that might affect the drug release were studied based on a 23 factorial design. The formulation variables were level of osmogen, ethylcellulose, and pore former. The effect of varying osmotic pressure and agitation intensity on drug release was also studied. Scanning electron microscopy showed an outer, dense, nonporous region and an inner, lighter, porous region for the prepared AM inside, and a gelatin layer outside. Statistical testing was applied for in vitro drug release. Results showed the drug release to be independent of the agitation intensity but dependent on the osmotic pressure of the dissolution media. The release kinetics followed the Higuchi model, and the mechanism of release was Fickian diffusion.

  • In situ
  • Similarity
  • Extra design checkpoint
  • Cefadroxil
  • Zero-order
  • ©PDA, Inc. 2011
View Full Text

PDA members receive access to all articles published in the current year and previous volume year. Institutional subscribers received access to all content. Log in below to receive access to this article if you are either of these.  

If you are neither or you are a PDA member trying to access an article outside of your membership license, then you must purchase access to this article (below). If you do not have a username or password for JPST, you will be required to create an account prior to purchasing. 

Full issue PDFs are for PDA members only.

Note to pda.org users

The PDA and PDA bookstore websites (www.pda.org and www.pda.org/bookstore) are separate websites from the PDA JPST website. When you first join PDA, your initial UserID and Password are sent to HighWirePress to create your PDA JPST account. Subsequent UserrID and Password changes required at the PDA websites will not pass on to PDA JPST and vice versa. If you forget your PDA JPST UserID and/or Password, you can request help to retrieve UserID and reset Password below.

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

patientACCESS

patientACCESS - Patients desiring access to articles

Full issue PDFs are for PDA members only. You can join PDA at www.pda.org. 

PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 65 (1)
PDA Journal of Pharmaceutical Science and Technology
Vol. 65, Issue 1
January/February 2011
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
In Situ Phase-Transited Asymmetric Membrane Capsules: A Means for Achieving Delayed and Osmotic Release for pH Solubility-Dependant Drugs
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
1 + 4 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
In Situ Phase-Transited Asymmetric Membrane Capsules: A Means for Achieving Delayed and Osmotic Release for pH Solubility-Dependant Drugs
Anil K. Philip, Betty Philip
PDA Journal of Pharmaceutical Science and Technology Jan 2011, 65 (1) 32-41;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
In Situ Phase-Transited Asymmetric Membrane Capsules: A Means for Achieving Delayed and Osmotic Release for pH Solubility-Dependant Drugs
Anil K. Philip, Betty Philip
PDA Journal of Pharmaceutical Science and Technology Jan 2011, 65 (1) 32-41;
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results and Discussion
    • Conclusion
    • Declaration of Interest:
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Quantitative and Qualitative Evaluation of Microorganism Profile Identified in Bioburden Analysis in a Biopharmaceutical Facility in Brazil: Criteria for Classification and Management of Results
  • Evaluation of Extreme Depyrogenation Conditions on the Surface Hydrolytic Resistance of Glass Containers for Pharmaceutical Use
  • A Holistic Approach for Filling Volume Variability Evaluation and Control with Statistical Tool
Show more Research

Similar Articles

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire