Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleResearch

Identification of Micro-Organisms after Milliflex Rapid Detection—A Possibility To Identify Nonsterile Findings in the Milliflex Rapid Sterility Test

Jennifer C. Gray, Dieter Morandell, Günther Gapp, Nathalie Le Goff, Gunther Neuhaus and Alexandra Staerk
PDA Journal of Pharmaceutical Science and Technology January 2011, 65 (1) 42-54;
Jennifer C. Gray
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: jennifer.gray@novartis.com
Dieter Morandell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Günther Gapp
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nathalie Le Goff
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gunther Neuhaus
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alexandra Staerk
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

The Milliflex Rapid System is used as a rapid microbiological method based on adenosine triphosphate (ATP) bioluminescence in the pharmaceutical industry to quantify the amount of micro-organisms present in water and in bioburden samples. The system can also be used for qualitative analyses, for example, to perform a rapid sterility test. This rapid sterility test has been successfully validated and implemented at Novartis and Sandoz. As the reagents used for the ATP bioluminescence reaction, which are directly sprayed on a micro-colony, disrupt the walls/membranes of the present cells to release ATP and therefore no intact cells for subsequent identification were believed to be present, the identification was supposed to be impossible until now.

During development and validation of a rapid sterility test with the Milliflex Rapid System, a possibility to identify contaminants was found. A method based on regrowth of the Milliflex Rapid-treated microbial cells and consecutive genotypic identification reproduced feasible and robust results. The data presented here show that sufficient recovery of the micro-colonies detected with the Milliflex Rapid System was reached with the test strains, except with Penicillium spec. The chosen micro-organisms represent the full spectrum of environmental isolates and ATCC strains, and it was shown that they are not destroyed after application of the reagents for the ATP bioluminescence reaction.

Overall, 22 stressed microbial strains were examined during the study.

LAY ABSTRACT: After Milliflex Rapid System detection, it was supposed that a subsequent identification of the contaminant is not possible. In this paper it is shown how contaminants can be identified in the rapid sterility test application.

  • Milliflex Rapid detection
  • Rapid sterility test
  • Regrowth
  • Identification
  • ATP bioluminescence
  • ©PDA, Inc. 2011
View Full Text

PDA members receive access to all articles published in the current year and previous volume year. Institutional subscribers received access to all content. Log in below to receive access to this article if you are either of these.  

If you are neither or you are a PDA member trying to access an article outside of your membership license, then you must purchase access to this article (below). If you do not have a username or password for JPST, you will be required to create an account prior to purchasing. 

Full issue PDFs are for PDA members only.

Note to pda.org users

The PDA and PDA bookstore websites (www.pda.org and www.pda.org/bookstore) are separate websites from the PDA JPST website. When you first join PDA, your initial UserID and Password are sent to HighWirePress to create your PDA JPST account. Subsequent UserrID and Password changes required at the PDA websites will not pass on to PDA JPST and vice versa. If you forget your PDA JPST UserID and/or Password, you can request help to retrieve UserID and reset Password below.

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

patientACCESS

patientACCESS - Patients desiring access to articles

Full issue PDFs are for PDA members only. You can join PDA at www.pda.org. 

PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 65 (1)
PDA Journal of Pharmaceutical Science and Technology
Vol. 65, Issue 1
January/February 2011
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Identification of Micro-Organisms after Milliflex Rapid Detection—A Possibility To Identify Nonsterile Findings in the Milliflex Rapid Sterility Test
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
10 + 4 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Identification of Micro-Organisms after Milliflex Rapid Detection—A Possibility To Identify Nonsterile Findings in the Milliflex Rapid Sterility Test
Jennifer C. Gray, Dieter Morandell, Günther Gapp, Nathalie Le Goff, Gunther Neuhaus, Alexandra Staerk
PDA Journal of Pharmaceutical Science and Technology Jan 2011, 65 (1) 42-54;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Identification of Micro-Organisms after Milliflex Rapid Detection—A Possibility To Identify Nonsterile Findings in the Milliflex Rapid Sterility Test
Jennifer C. Gray, Dieter Morandell, Günther Gapp, Nathalie Le Goff, Gunther Neuhaus, Alexandra Staerk
PDA Journal of Pharmaceutical Science and Technology Jan 2011, 65 (1) 42-54;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • 1. Introduction
    • 2. Material and Methods
    • 3. Results
    • 4. Discussion
    • Conflict of Interest Declaration
    • Acknowledgements
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Investigation of the Detection Ability of an Intrinsic Fluorescence-Based Bioaerosol Detection System for Heat-Stressed Bacteria
  • Validation of the BacT/ALERT(R) 3D System for Rapid Sterility Testing of Biopharmaceutical Samples
  • Google Scholar

More in this TOC Section

  • Container Closure Integrity of Vial Primary Packaging Systems under Frozen Storage Conditions: A Case Study
  • Advances in Large Volume Subcutaneous Injections: A Pilot Tolerability Study of an Innovative Needle-Free Injection Platform
  • Quantification and Stability Impact Assessment of Drop Stresses in Biologic Drug Products
Show more Research

Similar Articles

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2023 PDA Journal of Pharmaceutical Science and Technology ISSN: 1079-7440

Powered by HighWire