Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleResearch

In Situ Phase-Transited Asymmetric Membrane Capsules: A Means for Achieving Delayed and Osmotic Release for pH Solubility-Dependant Drugs

Anil K. Philip and Betty Philip
PDA Journal of Pharmaceutical Science and Technology January 2011, 65 (1) 32-41;
Anil K. Philip
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: philip@unizwa.edu.om philipanil23@yahoo.co.in
Betty Philip
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Santus G.,
    2. Baker R. W.
    Osmotic drug delivery: a review of the patent literature. J. Controlled Release 1995, 35 (1), 1–21.
    OpenUrl
  2. 2.↵
    1. Theeuwes F.
    Elementary osmotic pump. J. Pharm. Sci. 1975, 64 (12), 1987–1991.
    OpenUrlCrossRefPubMedWeb of Science
  3. 3.↵
    1. Theeuwes F.,
    2. Saunders R. J.,
    3. Mefford W. S.
    Process for Forming Outlet Passageways in Pills Using a Laser. US Patent 4,088,864, 1978.
  4. 4.↵
    1. Herbig S. M.,
    2. Cardinal J. R.,
    3. Korsmeyer R. W.,
    4. Smith K. L.
    Asymmetric membrane tablet coatings for osmotic drug delivery. J. Controlled Release 1995, 35 (2–3), 127–136.
    OpenUrl
  5. 5.↵
    1. Philip A. K.,
    2. Pathak K.
    Osmotic flow through asymmetric membrane: a means for controlled delivery of drugs with varying solubility. AAPS PharmSciTech 2006, 7 (3), 21–25.
    OpenUrl
  6. 6.↵
    1. Philip A.,
    2. Pathak K.
    In-situ formed asymmetric membrane capsule for osmotic release of poorly water-soluble drug. PDA J. Pharm. Sci. Technol. 2007, 61 (1), 24–36.
    OpenUrlAbstract/FREE Full Text
  7. 7.↵
    1. Philip A. K.,
    2. Pathak K.
    Wet process-induced phase-transited drug delivery system: a means for achieving osmotic, controlled and level A IVIVC for poorly water-soluble drug. Drug Dev. Ind. Pharm. 2008, 34 (7), 735–743.
    OpenUrlPubMed
  8. 8.↵
    1. Philip A. K.,
    2. Pathak K.,
    3. Shakya P.
    Asymmetric membrane in membrane capsules: a means for achieving delayed and osmotic flow of cefadroxil. Eur. J. Pharm. Biopharm. 2008, 69 (2), 658–666.
    OpenUrlPubMed
  9. 9.↵
    1. Gupta S. K.,
    2. Atkinson L.,
    3. Theeuwes F.,
    4. Wong P.,
    5. Longstreth J.
    Pharmacokinetics of verapamil from an osmotic system with delayed onset. Eur. J. Pharm. Biopharm. 1996, 42 (1), 74–81.
    OpenUrl
  10. 10.↵
    1. Grundy J. S.,
    2. Foster R. T.
    The nifedipine gastrointestinal therapeutic system (GITS). Evaluation of pharmaceutical, pharmacokinetic and pharmacological properties. Clin. Pharmacokinet. 1996, 30 (1), 28–51.
    OpenUrlCrossRefPubMed
  11. 11.↵
    1. La Rosa F.,
    2. Ripa S.,
    3. Prenna M.,
    4. Ghezzi A.,
    5. Pfeffer M.
    Pharmacokinetics of cefadroxil after oral administration in humans. Antimicrob. Agents Chemother. 1982, 21 (2), 320–322.
    OpenUrlAbstract/FREE Full Text
  12. 12.↵
    1. Buck R. E.,
    2. Price K. E.
    Cefadroxil, a new broad-spectrum cephalosporin. Antimicrob. Agents Chemother. 1977, 11 (2), 324–330.
    OpenUrlAbstract/FREE Full Text
  13. 13.↵
    1. Schnurch A. B.,
    2. Guggi D.,
    3. Pinter Y.
    Thiolated chitosans: development and in vitro evaluation of a mucoadhesive, permeation enhancing oral drug delivery system. J. Controlled Release 2004, 94 (1), 177–186.
    OpenUrlCrossRefPubMedWeb of Science
  14. 14.↵
    1. Bhagwati S. T.,
    2. Hiremath S. M.,
    3. Sreeniwas S. A.
    Formulation and evaluation of cefadroxil dispersible tablets. Pharm. Rev. 2006, 4, 136–139.
    OpenUrl
  15. 15.↵
    1. Sweetman S. C.
    Martindale—The Complete Drug Reference, 5th ed; Pharmaceutical Press: London, 2002; pp 161–162.
  16. 16.↵
    1. McClelland G. A.,
    2. Sutton S. C.,
    3. Engle K.,
    4. Zentner G. M.
    The solubility-modulated osmotic pump: in vitro/in vivo release of diltiazem hydrochloride. Pharm. Res. 1991, 8 (1), 88–92.
    OpenUrlPubMed
  17. 17.↵
    1. Zentner G. M.,
    2. McClelland G. A.,
    3. Sutton S. C.
    Controlled porosity solubility- and resin-modulated osmotic drug delivery systems for release of diltiazem hydrochloride. J. Controlled Release 1991, 16 (1–2), 237–244.
    OpenUrl
  18. 18.↵
    1. Martin A.
    Physical pharmacy, 3rd ed; B. I. Waverly Pvt.: New Delhi, India; 1999; p 72.
  19. 19.↵
    United States Pharmacopoeia, 4th ed; United State Pharmacopoeial Convention: Rockville, MD, 2004; p 2308.
  20. 20.↵
    1. Najib N.,
    2. Suleiman M.
    The kinetics of drug release from ethylcellulose solid dispersions. Drug Dev. Ind. Pharm. 1985, 11, 2169–2181.
    OpenUrlCrossRefWeb of Science
  21. 21.↵
    1. Desai S. J.,
    2. Singh P.,
    3. Simonelli A. P.,
    4. Higuchi W. I.
    Investigation of factors influencing release of solid drug dispersed in wax matrices. III. Quantitative studies involving the polyethylene plastic matrix. J. Pharm. Sci. 1966, 55 (11), 1230–1234.
    OpenUrlCrossRefPubMedWeb of Science
  22. 22.↵
    1. Higuchi T.
    Mechanism of sustained action medication, theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J. Pharm. Sci. 1963, 52 (12), 1145–1149.
    OpenUrlCrossRefPubMedWeb of Science
  23. 23.↵
    1. Hixson A. W.,
    2. Crowell J. H.
    Dependence of reaction velocity upon surface and agitation. I. Theoretical consideration. Ind. Eng. Chem. 1931, 23 (8), 923–931.
    OpenUrlCrossRef
  24. 24.↵
    1. Korsmeyer R. W.,
    2. Gurny R.,
    3. Doelker E. M.,
    4. Buri P.,
    5. Peppas N. A.
    Mechanism of solute release from porous hydrophilic polymers. Int. J. Pharm. 1983, 15 (1), 25–35.
    OpenUrlCrossRefWeb of Science
  25. 25.↵
    1. Jensen J. L.,
    2. Appel L. E.,
    3. Clair J. H.,
    4. Zentner G. M.
    Variables that affect the mechanism of drug release from osmotic pumps coated with acrylate/methacrylate copolymer latexes. J. Pharm. Sci. 1995, 84 (5), 530–533.
    OpenUrlPubMed
  26. 26.↵
    1. Kamba M.,
    2. Seta Y.,
    3. Kusai A.,
    4. Nishimura K.
    Evaluation of the mechanical destructive force in the stomach of dog. Int. J. Pharm. 2000, 208 (1–2), 61–70.
    OpenUrlCrossRefPubMedWeb of Science
  27. 27.↵
    1. Kamba M.,
    2. Seta Y.,
    3. Kusai A.,
    4. Ikeda M.,
    5. Nishimura K.
    A unique dosage form to evaluate the mechanical destructive force in the gastrointestinal tract. Int. J. Pharm. 2001, 228 (1–2), 209–217.
    OpenUrlCrossRefPubMedWeb of Science
  28. 28.↵
    1. Mei X.,
    2. Etzler F. M.,
    3. Wang Z.
    Use of texture analysis to study hydrophilic solvent effects on the mechanical properties of hard gelatin capsules. Int. J. Pharm. 2006, 324 (2), 128–135.
    OpenUrlPubMed
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 65 (1)
PDA Journal of Pharmaceutical Science and Technology
Vol. 65, Issue 1
January/February 2011
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
In Situ Phase-Transited Asymmetric Membrane Capsules: A Means for Achieving Delayed and Osmotic Release for pH Solubility-Dependant Drugs
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
2 + 7 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
In Situ Phase-Transited Asymmetric Membrane Capsules: A Means for Achieving Delayed and Osmotic Release for pH Solubility-Dependant Drugs
Anil K. Philip, Betty Philip
PDA Journal of Pharmaceutical Science and Technology Jan 2011, 65 (1) 32-41;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
In Situ Phase-Transited Asymmetric Membrane Capsules: A Means for Achieving Delayed and Osmotic Release for pH Solubility-Dependant Drugs
Anil K. Philip, Betty Philip
PDA Journal of Pharmaceutical Science and Technology Jan 2011, 65 (1) 32-41;
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results and Discussion
    • Conclusion
    • Declaration of Interest:
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Analysis of Virus Clearance for Biotechnology Manufacturing Processes from Early to Late Phase Development
  • Coring and Fragmentation of Elastomeric Needle Shield in a Pre-Filled Syringe
  • Worldwide Regulatory Reliance: Results of an Executed Chemistry, Manufacturing, and Control Post-Approval Change Pilot
Show more Research

Similar Articles

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire