Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleResearch

Information Processing: Rate-Based Investigation of Cell Physiological Changes along Design Space Development

Patrick Sagmeister, Patrick Wechselberger and Christoph Herwig
PDA Journal of Pharmaceutical Science and Technology November 2012, 66 (6) 526-541; DOI: https://doi.org/10.5731/pdajpst.2012.00889
Patrick Sagmeister
Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna, Austria
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Patrick Wechselberger
Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna, Austria
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christoph Herwig
Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna, Austria
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: christoph.herwig@tuwien.ac.at
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    ICH. Pharmaceutical development. Q8(R2). Current Step 4′. Retrieved July 3, 2012 from http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q8_R1/Step4/Q8_R2_Guideline.pdf, 2009.
  2. 2.↵
    U.S. Food and Drug Administration (FDA). Pharmaceutical cGMPs for the 21st Century—A Risk-Based Approach. Retrieved July 3, 2012 from http://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/Manufacturing/QuestionsandAnswersonCurrentGoodManufacturingPracticescGMPforDrugs/UCM176374.pdf, 2004.
  3. 3.↵
    ICH. Development and manufacture of drug substances (chemical entities and biotechnological/biological entities) Q11. Retrieved July 3, 2012 from http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q11/Q11_Step_4.pdf, 2012.
  4. 4.↵
    EMA Guideline on Real Time Release Testing (formerly Guideline on Parametric Release). Retrieved July 3, 2012 from http://www.emea.europa.eu/docs/en_GB/document_library/Scientific_guideline/2010/03/WC500075028.pdf, 2010.
  5. 5.↵
    1. Garcia T.,
    2. Cook G.,
    3. Nosal R
    . PQLI key topics—criticality, design space, and control strategy. J. Pharm. Innov. 2008, 3 (2), 60–68.
    OpenUrl
  6. 6.↵
    1. Chirino A. J.,
    2. Mire-Sluis A
    . Characterizing biological products and assessing comparability following manufacturing changes. Nature Biotechnol. 2004, 22 (11), 1383–1391.
    OpenUrlCrossRefPubMedWeb of Science
  7. 7.↵
    1. Harms J.,
    2. Wang X.,
    3. Kim T.,
    4. Yang X.,
    5. Rathore A. S
    . Defining process design space for biotech products: case study of Pichia pastoris fermentation. Biotechnol. Prog. 2008, 24 (3), 655–662.
    OpenUrlPubMed
  8. 8.↵
    1. Rathore A. S.,
    2. Yu M.,
    3. Yeboah S.,
    4. Sharma A
    . Case study and application of process analytical technology (PAT) towards bioprocessing: use of on-line high-performance liquid chromatography (HPLC) for making real-time pooling decisions for process chromatography. Biotechnol. Bioeng. 2008, 100 (2), 306–316.
    OpenUrlPubMed
  9. 9.↵
    1. Woelbeling C
    . Creating quality by design/process analytical technology (PAT/QbD) management awareness. Pharm. Eng. 2008, 28, 1–9.
    OpenUrl
  10. 10.↵
    1. Yu L
    . Pharmaceutical quality by design: product and process development, understanding, and control. Pharm. Res. 2008, 25 (4), 781–791.
    OpenUrlCrossRefPubMed
  11. 11.↵
    1. Huang J.,
    2. Kaul G.,
    3. Cai C.,
    4. Chatlapalli R.,
    5. Hernandez-Abad P.,
    6. Ghosh K.,
    7. Nagi A
    . Quality by design case study: An integrated multivariate approach to drug product and process development. Int. J. Pharm. 2009, 382 (1–2), 23–32.
    OpenUrlPubMed
  12. 12.↵
    1. Mandenius C.-F.,
    2. Graumann K.,
    3. Schultz T. W.,
    4. Premstaller A.,
    5. Olsson I. M.,
    6. Petiot E.,
    7. Clemens C.,
    8. Welin M
    . Quality-by-design for biotechnology-related pharmaceuticals. Biotechnology Journal 2009, 4 (5), 600–609.
    OpenUrlPubMed
  13. 13.↵
    1. Rathore A. S
    . Roadmap for implementation of quality by design (QbD) for biotechnology products. Trends Biotechnol. 2009, 27 (9), 546–553.
    OpenUrlCrossRefPubMed
  14. 14.↵
    1. Rathore A. S.,
    2. Mhatre R
    . Quality by Design for Biopharmaceuticals: Principles and Case Studies; John Wiley & Sons: Hoboken, NJ, 2009.
  15. 15.↵
    1. Schmidt-Bader T
    . PAT und QbD im regulatorischen Umfeld der Pharmazeutischen Industrie. Chemie Ingenieur Technik 2010, 82, 415–428.
    OpenUrl
  16. 16.↵
    1. Anurag P.,
    2. Rathore S.,
    3. Branning R.,
    4. Cecchini D
    . Quality: design space for biotech products. BioPharm Int. 2007, 20 (4).
  17. 17.↵
    1. Winkle H
    . Implementing Quality by Design, PDA/FDA Joint Regulatory Conference, Washington, DC. Retrieved July 3, 2012 from http://www.fda.gov/downloads/AboutFDA/CentersOffices/CDER/ucm103453.pdf, 2012.
  18. 18.↵
    1. Ündey C.,
    2. Ertunç S.,
    3. Mistretta T.,
    4. Looze B
    . Applied advanced process analytics in biopharmaceutical manufacturing: Challenges and prospects in real-time monitoring and control. J. Process Control 2010, 20 (9), 1009–1018.
    OpenUrlCrossRefWeb of Science
  19. 19.↵
    1. Kitano H
    . Systems biology: a brief overview. Science 2002, 295, 1662–1664.
    OpenUrlAbstract/FREE Full Text
  20. 20.↵
    1. Striedner G.,
    2. Cserjan-Puschmann M.,
    3. Potschacher F.,
    4. Bayer K
    . Tuning the transcription rate of recombinant protein in strong Escherichia coli expression systems through repressor titration. Biotechnol. Prog. 2003, 19 (5), 1427–1432.
    OpenUrlCrossRefPubMed
  21. 21.↵
    1. Wechselberger P.,
    2. Herwig C
    . Model-based analysis on the relationship of signal quality to real-time extraction of information in bioprocesses. Biotechnol. Prog. 2012, 28 (1), 265–275.
    OpenUrlPubMed
  22. 22.↵
    1. Herwig C.,
    2. Marison I.,
    3. von Stockar U
    . On-line stoichiometry and identification of metabolic state under dynamic process conditions. Biotechnol. Bioeng. 2001, 75 (3), 345–354.
    OpenUrlPubMed
  23. 23.↵
    1. Jazini M.,
    2. Herwig C
    . Effect of post-induction substrate oscillation on recombinant alkaline phosphatase production expressed in Escherichia coli. J. Biosci. Bioeng. 2011, 112 (6), 606–610.
    OpenUrlPubMed
  24. 24.↵
    1. Rozkov A.,
    2. Avignone-Rossa C. A.,
    3. Ertl P. F.,
    4. Jones P.,
    5. O'Kennedy R. D.,
    6. Smith J. J.,
    7. Dale J. W.,
    8. Bushell M. E
    . Characterization of the metabolic burden on Escherichia coli DH1 cells imposed by the presence of a plasmid containing a gene therapy sequence. Biotechnol. Bioeng. 2004, 88 (7), 909–915.
    OpenUrlPubMed
  25. 25.↵
    1. Dietzsch C.,
    2. Spadiut O.,
    3. Herwig C
    . A dynamic method based on the specific substrate uptake rate to set up a feeding strategy for Pichia pastoris. Microb. Cell Fact. 2011, 10, 14.
    OpenUrlPubMed
  26. 26.↵
    1. Dietzsch C.,
    2. Spadiut O.,
    3. Herwig C
    . A fast approach to determine a fed batch feeding profile for recombinant Pichia pastoris strains. Microb. Cell Fact. 2011, 10, 85.
    OpenUrlPubMed
  27. 27.↵
    1. Wechselberger P.,
    2. Sagmeister P.,
    3. Engelking H.,
    4. Schmidt T.,
    5. Wenger J
    . Efficient feeding profile optimization using physiological information. Bioprocess Biosyst. Eng. 2012, in press.
  28. 28.↵
    1. Jobé A. M.,
    2. Herwig C.,
    3. Surzyn M.,
    4. Walker B.,
    5. Marison I.,
    6. von Stockar U
    . Generally applicable fed-batch culture concept based on the detection of metabolic state by on-line balancing. Biotechnol. Bioeng. 2003, 82 (6), 627–639.
    OpenUrlPubMed
  29. 29.↵
    1. Wilms B.,
    2. Hauck A.,
    3. Reuss M.,
    4. Syldatk C.,
    5. Mattes R.,
    6. Siemann M.,
    7. Altenbuchner J
    . High-cell-density fermentation for production of L-N-carbamoylase using an expression system based on the Escherichia coli rhaBAD promoter. Biotechnol. Bioeng. 2001, 73 (2), 95–103.
    OpenUrlCrossRefPubMed
  30. 30.↵
    1. Baneyx F.,
    2. Mujacic M
    . Recombinant protein folding and misfolding in Escherichia coli. Nat. Biotechnol. 2004, 22 (11), 1399–1408.
    OpenUrlCrossRefPubMedWeb of Science
  31. 31.↵
    1. Andersson L.,
    2. Yang S.,
    3. Neubauer P.,
    4. Enfors S. O
    . Impact of plasmid presence and induction on cellular responses in fed batch cultures of Escherichia coli. J. Biotechnol. 1996, 46 (3), 255–263.
    OpenUrlCrossRefPubMed
  32. 32.↵
    1. Tong L
    . Extracellular expression, purification, and characterization of a winter flounder antifreeze polypeptide from Escherichia coli. Protein Expr. Purif. 2000, 18 (2), 175–181.
    OpenUrlPubMed
  33. 33.↵
    1. Corchero J. L.,
    2. Cubarsí R.,
    3. Vila P.,
    4. Arís A.,
    5. Villaverde A
    . Cell lysis in Escherichia coli cultures stimulates growth and biosynthesis of recombinant proteins in surviving cells. Microbiol. Res. 2001, 156 (1), 13–18.
    OpenUrlPubMed
  34. 34.↵
    1. Sommer B.,
    2. Friehs K.,
    3. Flaschel E
    . Efficient production of extracellular proteins with Escherichia coli by means of optimized coexpression of bacteriocin release proteins. J. Biotechnol. 2010, 145 (4), 350–358.
    OpenUrlPubMed
  35. 35.↵
    1. Andersson L.,
    2. Strandberg L.,
    3. Enfors S.-O
    . Cell segregation and lysis have profound effects on the growth of Escherichia coli in high cell density fed batch cultures. Biotechnol. Prog. 1996, 12 (2), 190–195.
    OpenUrlPubMed
  36. 36.↵
    1. Sandén A. M.,
    2. Prytz I.,
    3. Tubulekas I.,
    4. Förberg C.,
    5. Le H.,
    6. Hektor A.,
    7. Neubauer P.,
    8. Pragai Z.,
    9. Harwood C.,
    10. Ward A.,
    11. Picon A.,
    12. De Mattos J. T.,
    13. Postma P.,
    14. Farewell A.,
    15. Nyström T.,
    16. Reeh S.,
    17. Pedersen S.,
    18. Larsson G
    . Limiting factors in Escherichia coli fed-batch production of recombinant proteins. Biotechnol. Bioeng. 2003, 81 (2), 158–166.
    OpenUrlCrossRefPubMedWeb of Science
  37. 37.↵
    1. Glick B. R
    . Metabolic load and heterologous gene expression. Biotechnol. Adv. 1995, 13 (2), 247–261.
    OpenUrlCrossRefPubMedWeb of Science
  38. 38.↵
    1. Birnbaum S.,
    2. Bailey J. E
    . Plasmid presence changes the relative levels of many host cell proteins and ribosome components in recombinant Escherichia coli. Biotechnol. Bioeng. 1991, 37 (8), 736–745.
    OpenUrlCrossRefPubMed
  39. 39.↵
    1. Voellmy R.,
    2. Goldberg A. L
    . Guanosine-5′-diphosphate-3′-diphosphate (ppGpp) and the regulation of protein breakdown in Escherichia coli. J. Biol. Chem. 1980, 255 (3), 1008–1014.
    OpenUrlFREE Full Text
  40. 40.↵
    1. Farewell A.,
    2. Neidhardt F. C
    . Effect of temperature on in vivo protein synthetic capacity in Escherichia coli. J. Bacteriol. 1998, 180 (17), 4704–4710.
    OpenUrlAbstract/FREE Full Text
  41. 41.↵
    1. Landgrebe D.,
    2. Haake C.,
    3. Höpfner T.,
    4. Beutel S.,
    5. Hitzmann B.,
    6. Scheper T.,
    7. Rhiel M.,
    8. Reardon K. F
    . On-line infrared spectroscopy for bioprocess monitoring. Appl. Microbiol. Biotechnol. 2010, 88 (1), 11–22.
    OpenUrlPubMed
  42. 42.↵
    1. Dietzsch C.,
    2. Spadiut O.,
    3. Herwig C
    . On-line multiple component analysis for efficient quantitative bioprocess development. J. Biotechnol. 2012, in press.
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 66 (6)
PDA Journal of Pharmaceutical Science and Technology
Vol. 66, Issue 6
November/December 2012
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Information Processing: Rate-Based Investigation of Cell Physiological Changes along Design Space Development
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
3 + 2 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Information Processing: Rate-Based Investigation of Cell Physiological Changes along Design Space Development
Patrick Sagmeister, Patrick Wechselberger, Christoph Herwig
PDA Journal of Pharmaceutical Science and Technology Nov 2012, 66 (6) 526-541; DOI: 10.5731/pdajpst.2012.00889

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Information Processing: Rate-Based Investigation of Cell Physiological Changes along Design Space Development
Patrick Sagmeister, Patrick Wechselberger, Christoph Herwig
PDA Journal of Pharmaceutical Science and Technology Nov 2012, 66 (6) 526-541; DOI: 10.5731/pdajpst.2012.00889
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • 1. Introduction
    • 2. Materials and Methods
    • 3. Results
    • 4. Discussion
    • 5. Conclusions
    • Conflict of Interest Declaration
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Risk-based Process Development of Biosimilars as Part of the Quality by Design Paradigm
  • Google Scholar

More in this TOC Section

  • Analysis of Virus Clearance for Biotechnology Manufacturing Processes from Early to Late Phase Development
  • Coring and Fragmentation of Elastomeric Needle Shield in a Pre-Filled Syringe
  • Worldwide Regulatory Reliance: Results of an Executed Chemistry, Manufacturing, and Control Post-Approval Change Pilot
Show more Research

Similar Articles

Keywords

  • Quality by Design
  • Process development
  • Process optimization
  • Multivariate data analysis
  • Design of Experiments
  • Design space development
  • Data processing
  • Information processing

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire