Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleResearch

Sustained Delivery of Amphotericin B and Vancomycin Hydrochloride by an Injectable Thermogelling Tri-Block Copolymer

Elham Khodaverdi, Arsalan Akbari, Farnaz Sadat Mirzazadeh Tekie, Seyed Ahmad Mohajeri, Gholamhossein Zohuri and Farzin Hadizadeh
PDA Journal of Pharmaceutical Science and Technology March 2013, 67 (2) 135-145; DOI: https://doi.org/10.5731/pdajpst.2013.00908
Elham Khodaverdi
1Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran;
3Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Arsalan Akbari
1Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran;
3Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Farnaz Sadat Mirzazadeh Tekie
5Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Seyed Ahmad Mohajeri
1Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran;
3Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gholamhossein Zohuri
4Department of Chemistry, Faculty of Science, Ferdowsi University, Mashhad, Iran; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Farzin Hadizadeh
2Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: hadizadehf@mums.ac.ir
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Lin C.-C.,
    2. Metters A. T.
    Hydrogels in controlled release formulations: network design and mathematical modeling. Adv. Drug Deliv. Rev. 2006, 58 (12–13), 1379–1408.
    OpenUrlCrossRefPubMedWeb of Science
  2. 2.↵
    1. Gupta P.,
    2. Vermani K.,
    3. Garg S.
    Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov. Today 2002, 7 (10), 569–579.
    OpenUrlCrossRefPubMedWeb of Science
  3. 3.↵
    1. Kim S. W.,
    2. Bae Y. H.,
    3. Okano T.
    Hydrogels: swelling, drug loading, and release. Pharm. Res. 1992, 9 (3), 283–290.
    OpenUrlCrossRefPubMedWeb of Science
  4. 4.↵
    1. He C.,
    2. Kim S. W.,
    3. Lee D. S.
    In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J. Controlled Release 2008, 127 (3), 189–207.
    OpenUrlCrossRefPubMedWeb of Science
  5. 5.↵
    1. Ruel-Gariépy E.,
    2. Leroux J.-C.
    In situ-forming Hydrogels—review of temperature-sensitive systems. Eur. J. Pharm. Biopharm. 2004, 58 (2), 409–426.
    OpenUrlCrossRefPubMed
  6. 6.↵
    1. Khodaverdi E.,
    2. Rajabi O.,
    3. Farhadi F.,
    4. Jalali A.,
    5. Mirzazadeh Tekie F. S.
    Preparation and Investigation of poly (N-isopropylacrylamide-acrylamide) membranes in temperature responsive drug delivery. Iranian J. Basic Med. Sci. 2009, 13, 1–8.
    OpenUrl
  7. 7.↵
    1. Klouda L.,
    2. Mikos A. G.
    Thermoresponsive hydrogels in biomedical applications. Eur. J. Pharm. Biopharm. 2008, 68 (1), 34–45.
    OpenUrlCrossRefPubMedWeb of Science
  8. 8.↵
    1. Adams M. L.,
    2. Lavasanifar A.,
    3. Kwon G. S.
    Amphiphilic block copolymers for drug delivery. J. Pharm. Sci. 2003, 92 (7), 1343–1355.
    OpenUrlCrossRefPubMedWeb of Science
  9. 9.↵
    1. Park J. S.,
    2. Woo D. G.,
    3. Sun B. K.,
    4. Chung H.-M.,
    5. Im S. J.,
    6. Choi Y. M.,
    7. Park K.,
    8. Huh K. M.,
    9. Park K.-H.
    In vitro and in vivo test of PEG/PCL-based hydrogel scaffold for cell delivery application. J. Controlled Release 2007, 124 (1–2), 51–59.
    OpenUrlCrossRefPubMedWeb of Science
  10. 10.↵
    1. Lu F.,
    2. Lei L.,
    3. Shen Y.-Y.,
    4. Hou J.-W.,
    5. Chen W.-L.,
    6. Li Y.-G.,
    7. Guo S.-R.
    Effects of amphiphilic PCL-PEG-PCL copolymer addition on 5-fluorouracil release from biodegradable PCL films for stent application. Int. J. Pharm. 2011, 419 (1–2), 77–84.
    OpenUrlPubMed
  11. 11.↵
    1. Wei X.,
    2. Gong C.,
    3. Gou M.,
    4. Fu S.,
    5. Guo Q.,
    6. Shi S.,
    7. Luo F.,
    8. Guo G.,
    9. Qiu L.,
    10. Qian Z.
    Biodegradable poly(epsilon-caprolactone)–poly(ethylene glycol) copolymers as drug delivery system. Int. J. Pharm. 2009, 381 (1), 1–18.
    OpenUrlCrossRefPubMedWeb of Science
  12. 12.↵
    1. Zhang L.,
    2. He Y.,
    3. Yu M.,
    4. Song C.
    Paclitaxel-loaded polymeric nanoparticles based on PCL–PEG–PCL: preparation, in vitro and in vivo evaluation. J. Controlled Release 2011, 152 (Suppl 1), e114–e116.
    OpenUrlPubMed
  13. 13.↵
    1. Gou M.,
    2. Zheng L.,
    3. Peng X.,
    4. Men K.,
    5. Zheng X.,
    6. Zeng S.,
    7. Guo G.,
    8. Luo F.,
    9. Zhao X.,
    10. Chen L.,
    11. Wei Y.,
    12. Qian Z.
    Poly(ε-caprolactone)–poly(ethylene glycol)–poly(ε-caprolactone) (PCL–PEG–PCL) nanoparticles for honokiol delivery in vitro. Int. J. Pharm. 2009, 375 (1–2), 170–176.
    OpenUrlCrossRefPubMedWeb of Science
  14. 14.↵
    1. Lee J. W.,
    2. Hua F.-J.,
    3. Lee D. S.
    Thermoreversible gelation of biodegradable poly(epsilon-caprolactone) and poly(ethylene glycol) multiblock copolymers in aqueous solutions. J. Controlled Release 2001, 73 (2–3), 315–327.
    OpenUrlPubMed
  15. 15.↵
    1. Gong C.,
    2. Shi S.,
    3. Dong P.,
    4. Kan B.,
    5. Gou M.,
    6. Wang X.,
    7. Li X.,
    8. Luo F.,
    9. Zhao X.,
    10. Wei Y.,
    11. Qian Z.
    Synthesis and characterization of PEG-PCL-PEG thermosensitive hydrogel. Int. J. Pharm. 2009, 365 (1–2), 89–99.
    OpenUrlCrossRefPubMedWeb of Science
  16. 16.↵
    1. Gong C.,
    2. Shi S.,
    3. Wu L.,
    4. Gou M.,
    5. Yin Q.,
    6. Guo Q.,
    7. Dong P.,
    8. Zhang F.,
    9. Luo F.,
    10. Zhao X.,
    11. Wei Y.,
    12. Qian Z.
    Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL-PEG-PCL hydrogel. Part 2: sol-gel-sol transition and drug delivery behavior. Acta Biomater. 2009, 5 (9), 3358–3370.
    OpenUrlCrossRefPubMedWeb of Science
  17. 17.↵
    1. Gong C. Y.,
    2. Shi S.,
    3. Dong P. W.,
    4. Yang B.,
    5. Qi X. R.,
    6. Guo G.,
    7. Gu Y. C.,
    8. Zhao X.,
    9. Wei Y. Q.,
    10. Qian Z. Y.
    Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL-PEG-PCL hydrogel: part 1—Synthesis, characterization, and acute toxicity evaluation. J. Pharm. Sci. 2009, 98 (12), 4684–4694.
    OpenUrlPubMed
  18. 18.↵
    1. Moretton M. A.,
    2. Glisoni R. J.,
    3. Chiappetta D. A.,
    4. Sosnik A.
    Molecular implications in the nanoencapsulation of the anti-tuberculosis drug rifampicin within flower-like polymeric micelles. Colloid. Surf., B Interfaces 2010, 79 (2), 467–479.
    OpenUrl
  19. 19.↵
    1. Dong X.,
    2. Qi R.,
    3. Huang Y.,
    4. Jing X.
    Synthesis of biodegradable dextran-g-(PCL-B-PEG) by combination of ring-opening polymerization and click chemistry. J. Controlled Release 2011, 152 (Suppl 1), e198–e199.
    OpenUrlPubMed
  20. 20.↵
    1. Sosnik A.,
    2. Gotelli G.,
    3. Abraham G. A.
    Microwave-assisted polymer synthesis (MAPS) as a tool in biomaterials science: how new and how powerful. Prog. Polym. Sci. 2011, 36 (8), 1050–1078.
    OpenUrlCrossRefWeb of Science
  21. 21.↵
    1. Cook J. P.,
    2. Goodall G. W.,
    3. Khutoryanskaya O. V.,
    4. Khutoryanskiy V. V.
    Microwave-assisted hydrogel synthesis: a new method for crosslinking polymers in aqueous solutions. Macromol. Rapid Commun. 2012, 33 (4), 332–326.
    OpenUrlPubMed
  22. 22.↵
    1. Wu Q.,
    2. Zhou L.,
    3. Zhang D.,
    4. Song X.,
    5. Zhang G.
    Synthesis and characterization of biodegradable poly(ε-caprolactone)/poly(γ-benzyl l-glutamate) block copolymer. Polym. Bull. 2011, 67 (7), 1227–1236.
    OpenUrl
  23. 23.↵
    1. Barrett J. P.,
    2. Vardulaki K. A.,
    3. Conlon C.,
    4. Cooke J.,
    5. Daza-Ramirez P.,
    6. Evans E. G.,
    7. Hawkey P. M.,
    8. Herbrecht R.,
    9. Marks D. I.,
    10. Moraleda J. M.,
    11. Park G. R.,
    12. Senn S. J.,
    13. Viscoli C.
    ; Amphotericin B Systematic Review Study Group. A systematic review of the antifungal effectiveness and tolerability of amphotericin B formulations. Clin. Ther. 2003, 25 (5), 1295–1320.
    OpenUrlCrossRefPubMedWeb of Science
  24. 24.↵
    1. Espuelas M. S.,
    2. Legrand P.,
    3. Campanero M. A.,
    4. Appel M.,
    5. Chéron M.,
    6. Gamazo C.,
    7. Barratt G.,
    8. Irache J. M.
    Polymeric carriers for amphotericin B: in vitro activity, toxicity and therapeutic efficacy against systemic candidiasis in neutropenic mice. J. Antimicrob. Chemother. 2003, 52 (3), 419–427 (2003).
    OpenUrlAbstract/FREE Full Text
  25. 25.↵
    1. Echevarría I.,
    2. Barturen C.,
    3. Renedo M. J.,
    4. Dios-Viéitez M. C.
    High-performance liquid chromatographic determination of amphotericin B in plasma and tissue. Application to pharmacokinetic and tissue distribution studies in rats. J. Chromatogr., A 1998, 819 (1–2), 171–176.
    OpenUrlPubMed
  26. 26.↵
    1. van Etten E. W.,
    2. ten Kate M. T.,
    3. Stearne L. E.,
    4. Bakker-Woudenberg I. A.
    Amphotericin B liposomes with prolonged circulation in blood: in vitro antifungal activity, toxicity, and efficacy in systemic candidiasis in leukopenic mice. Antimicrob. Agents Chemother. 1995, 39 (9), 1954–1958.
    OpenUrlAbstract/FREE Full Text
  27. 27.↵
    1. Cafferkey M. T.,
    2. Hone R.,
    3. Keane C. T.
    Severe staphylococcal infections treated with vancomycin. J. Antimicrob. Chemother. 1982, 9 (1) 69–74.
    OpenUrlAbstract/FREE Full Text
  28. 28.↵
    1. Liu C.,
    2. Bayer A.,
    3. Cosgrove S. E.,
    4. Daum R. S.,
    5. Fridkin S. K.,
    6. Gorwitz R. J.,
    7. Kaplan S. L.,
    8. Karchmer A. W.,
    9. Levine D. P.,
    10. Murray B. E.,
    11. Rybak M. J.,
    12. Talan D. A.,
    13. Chambers H. F.
    Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin. Infect. Dis. 2011, 52 (3), e18–e55.
    OpenUrlAbstract/FREE Full Text
  29. 29.↵
    1. Swartling M.,
    2. Gupta R.,
    3. Dudas V.,
    4. Guglielmo B.
    Short term impact of guidelines on vancomycin dosing and therapeutic drug monitoring. Int. J. Clin. Pharm. 2012, 34 (2), 282–285.
    OpenUrlPubMed
  30. 30.↵
    1. Lodise T. P.,
    2. Lomaestro B.,
    3. Graves J.,
    4. Drusano G. L.
    Larger vancomycin doses (at least four grams per day) are associated with an increased incidence of nephrotoxicity. Antimicrob. Agents Chemother. 2008, 52 (4), 1330–1336.
    OpenUrlAbstract/FREE Full Text
  31. 31.↵
    1. Perkins H. R.
    Vancomycin and related antibiotics. Pharmacol. Ther. 1982, 16 (2), 181–197.
    OpenUrlCrossRefPubMedWeb of Science
  32. 32.↵
    1. Veyries M. L.,
    2. Couarraze G.,
    3. Geiger S.,
    4. Agnely F.,
    5. Massias L.,
    6. Kunzli B.,
    7. Faurisson F.,
    8. Rouveix B.
    Controlled release of vancomycin from Poloxamer 407 gels. Int. J. Pharm. 1999, 192 (2), 183–193.
    OpenUrlCrossRefPubMed
  33. 33.↵
    1. Hirose K.,
    2. Marui A.,
    3. Arai Y.,
    4. Nomura T.,
    5. Inoue S.,
    6. Kaneda K.,
    7. Kamitani T.,
    8. Fujita M.,
    9. Mitsuyama M.,
    10. Tabata Y.,
    11. Komeda M.
    Sustained-release vancomycin sheet may help to prevent prosthetic graft methicillin-resistant Staphylococcus aureus infection. J. Vasc. Surg. 2006, 44 (2), 377–382.
    OpenUrlCrossRefPubMed
  34. 34.↵
    1. Egger P.,
    2. Bellmann R.,
    3. Wiedermann C. J.
    Determination of amphotericin B, liposomal amphotericin B, and amphotericin B colloidal dispersion in plasma by high-performance liquid chromatography. J. Chromatogr., B Biomed, Sci. Appl. 2001, 760 (2), 307–313.
    OpenUrlCrossRefPubMed
  35. 35.↵
    1. Mcclain J. B.,
    2. Bongiovanni R.,
    3. Brown S.
    Vancomycin quantitation by high-performance liquid chromatography in human serum. J. Chromatogr. 1982, 231 (2), 463–466.
    OpenUrlCrossRefPubMedWeb of Science
  36. 36.↵
    1. Jiang C. P.,
    2. Huang J. R.,
    3. Hsieh M. F.
    Fabrication of synthesized PCL-PEG-PCL tissue engineering scaffolds using an air pressure–aided deposition system. Rapid Prototyping J. 2011, 17, 288–297.
    OpenUrl
  37. 37.↵
    1. Ma G.,
    2. Miao B.,
    3. Song C.
    Thermosensitive PCL-PEG-PCL hydrogels: synthesis, characterization, and delivery of proteins. J. Appl. Polym. Sci. 2010, 116 (4), 1985–1993.
    OpenUrl
  38. 38.↵
    1. Miao B.,
    2. Song C.,
    3. Ma G.
    Injectable thermosensitive hydrogels for intra-articular delivery of methotrexate. J. Appl. Polym. Sci. 2011, 122 (3), 2139–2145.
    OpenUrl
  39. 39.↵
    1. Zong L.,
    2. Zhou S.,
    3. Sgriccia N.,
    4. Hawley M. C.,
    5. Kempel L. C.
    A review of microwave-assisted polymer chemistry (MAPC). J. Microw. Power Electromagn. Energy 2003, 38 (1), 49–74.
    OpenUrlPubMed
  40. 40.↵
    1. Hoogenboom R.,
    2. Schubert U. S.
    Microwave-assisted polymer synthesis: recent developments in a rapidly expanding field of research. Macromol. Rapid Commun. 2007, 28 (4), 368–386.
    OpenUrl
  41. 41.↵
    1. Wiesbrock F.,
    2. Hoogenboom R.,
    3. Schubert U. S.
    Microwave-assisted polymer synthesis: state-of-the-art and future perspectives. Macromol. Rapid Commun. 2004, 25 (20), 1739–1764.
    OpenUrlCrossRefWeb of Science
  42. 42.↵
    1. Kappe C. O.
    High-speed combinatorial synthesis utilizing microwave irradiation. Curr. Opin. Chem. Biol. 2002, 6 (3), 314–320.
    OpenUrlPubMed
  43. 43.↵
    1. Khodaverdi E.,
    2. Hadizadeh F.,
    3. Mirzazadeh Tekie F.,
    4. Jalali A.,
    5. Mohajeri S.,
    6. Ganji F.
    Preparation and analysis of a sustained drug delivery system by PLGA-PEG-PLGA triblock Copolymers. Polym. Bull. 2012, 69 (4), 429–438.
    OpenUrl
  44. 44.↵
    1. Ghahremankhani A. A.,
    2. Dorkoosh F.,
    3. Dinarvand R.
    PLGA-PEG-PLGA tri-block copolymers as in situ gel-forming peptide delivery system: effect of formulation properties on peptide release. Pharm. Dev. Technol. 2008, 13 (1), 49–55.
    OpenUrlPubMed
  45. 45.↵
    1. Higuchi T.
    Rate of release of medicaments from ointment bases containing drugs in suspension. J. Pharm. Sci. 1961, 50, 874–875.
    OpenUrlCrossRefPubMed
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 67 (2)
PDA Journal of Pharmaceutical Science and Technology
Vol. 67, Issue 2
March/April 2013
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Sustained Delivery of Amphotericin B and Vancomycin Hydrochloride by an Injectable Thermogelling Tri-Block Copolymer
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
16 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Sustained Delivery of Amphotericin B and Vancomycin Hydrochloride by an Injectable Thermogelling Tri-Block Copolymer
Elham Khodaverdi, Arsalan Akbari, Farnaz Sadat Mirzazadeh Tekie, Seyed Ahmad Mohajeri, Gholamhossein Zohuri, Farzin Hadizadeh
PDA Journal of Pharmaceutical Science and Technology Mar 2013, 67 (2) 135-145; DOI: 10.5731/pdajpst.2013.00908

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Sustained Delivery of Amphotericin B and Vancomycin Hydrochloride by an Injectable Thermogelling Tri-Block Copolymer
Elham Khodaverdi, Arsalan Akbari, Farnaz Sadat Mirzazadeh Tekie, Seyed Ahmad Mohajeri, Gholamhossein Zohuri, Farzin Hadizadeh
PDA Journal of Pharmaceutical Science and Technology Mar 2013, 67 (2) 135-145; DOI: 10.5731/pdajpst.2013.00908
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • 1. Introduction
    • 2. Materials and Methods
    • 3. Results
    • 4. Discussion
    • 5. Conclusion
    • Conflict of Interest Declaration
    • Acknowledgments
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Quantitative and Qualitative Evaluation of Microorganism Profile Identified in Bioburden Analysis in a Biopharmaceutical Facility in Brazil: Criteria for Classification and Management of Results
  • Evaluation of Extreme Depyrogenation Conditions on the Surface Hydrolytic Resistance of Glass Containers for Pharmaceutical Use
  • A Holistic Approach for Filling Volume Variability Evaluation and Control with Statistical Tool
Show more Research

Similar Articles

Keywords

  • Tri-block copolymer
  • PCL-PEG-PCL
  • Vancomycin
  • Amphotericin B
  • In situ forming gel
  • Drug release
  • Microwave

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire