Abstract
The objective of this work was to develop and evaluate a floating–pulsatile drug delivery of atenolol. The floating–pulsatile concept was applied to increase the gastric residence of the dosage form by having lag phase followed by a burst release. The system was generated which consisted of three different parts: a core tablet, containing the active ingredient; an erodible outer shell; and a top cover buoyant layer. The dry, coated tablet consists in a drug-containing core, coated by a hydrophilic erodible polymer responsible for a lag phase in the onset of pulsatile release. The buoyant layer, prepared with hydroxypropyl methylcellulose (HPMC) K100 M, citric acid, and sodium bicarbonate, provides buoyancy to increase the retention of the oral dosage form in the stomach. The effect of the hydrophilic erodible polymer characteristics on the lag time and drug release was investigated. Developed formulations were evaluated for their physical properties in vitro release as well as in vivo behavior. The results showed that K3 (180 mg of HPMC K4 M) and K6 (290 mg of HPMC E15 LV) with a buoyant layer were the best formulation, with lag times of 5.2 ± 0.1 h and 4.1 ± 0.2 h, respectively. Floating time was controlled by the quantity and composition of the buoyant layer. In-vitro results point out the capability of the system with its prolonged residence of the tablets in the stomach and release of drug after a programmed lag time. This was confirmed by in vivo x-ray technique.
LAY ABSTRACT: The objective of the present work was to develop a floating–pulsatile oral drug delivery system of atenolol with addition of hydroxylpropyl methylcellulose (HPMC) K100 M, HPMC K4 M, and HPMC E15 LV in different ratios with citric acid and sodium bicarbonate as gas-forming agents. The system consist of three different parts: a core tablet, containing the active ingredient; a bottom layer that erodes; and a top cover floating layer. Atenolol, a β-blocker, is prescribed widely in diverse cardiovascular diseases, for example, hypertension, angina pectoris, arrhythmias, and myocardial infarction. Developed formulations were evaluated for their physical properties and vitro release as well as in vivo behavior. The results showed that K3 (180 mg HPMC K4 M) and K6 (290 mg of HPMC E15 LV) with a buoyant layer were the best formulations with the lag times of 5.2 ± 0.1 h and 4.1 ± 0.2 h, respectively, and were found to be the best choice for manufacturing tablets.
- © PDA, Inc. 2013
PDA members receive access to all articles published in the current year and previous volume year. Institutional subscribers received access to all content. Log in below to receive access to this article if you are either of these.
If you are neither or you are a PDA member trying to access an article outside of your membership license, then you must purchase access to this article (below). If you do not have a username or password for JPST, you will be required to create an account prior to purchasing.
Full issue PDFs are for PDA members only.
Note to pda.org users
The PDA and PDA bookstore websites (www.pda.org and www.pda.org/bookstore) are separate websites from the PDA JPST website. When you first join PDA, your initial UserID and Password are sent to HighWirePress to create your PDA JPST account. Subsequent UserrID and Password changes required at the PDA websites will not pass on to PDA JPST and vice versa. If you forget your PDA JPST UserID and/or Password, you can request help to retrieve UserID and reset Password below.