Skip to main content
  • Main menu
  • User menu
  • Search

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleResearch

Utilization of the Tyndall Effect for Enhanced Visual Detection of Particles in Compatibility Testing of Intravenous Fluids: Validity and Reliability

Vigdis Staven, Marit Waaseth, Siri Wang, Ingrid Grønlie and Ingunn Tho
PDA Journal of Pharmaceutical Science and Technology March 2015, 69 (2) 270-283; DOI: https://doi.org/10.5731/pdajpst.2015.01020
Vigdis Staven
1Hospital Pharmacy of North Norway Trust, Tromsø, Norway;
2Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marit Waaseth
3Microbiology, Molecular and Pharmaco-Epidemiology Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Siri Wang
4Department for Medicinal Product Assessment, Norwegian Medicines Agency, Kalbakken, Oslo, Norway;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ingrid Grønlie
5Norwegian Medicines for Children Network, Bergen, Norway;
6Hospital Pharmacy at Haukeland University Hospital, Bergen, Norway; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ingunn Tho
2Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway;
7PharmaLuxLab, School of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Blindern, Oslo, Norway
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: ingunn.tho@farmasi.uio.no
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Hill S. E.,
    2. Heldman L. S.,
    3. Goo E. D.,
    4. Whippo P. E.,
    5. Perkinson J. C.
    Fatal microvascular pulmonary emboli from precipitation of a total nutrient admixture solution. JPEN J. Parenter. Enteral Nutr. 1996, 20 (1), 81–87.
    OpenUrlAbstract/FREE Full TextGoogle Scholar
  2. 2.↵
    1. Doessegger L.,
    2. Mahler H-C.,
    3. Szczesny P.,
    4. Rockstroh H.,
    5. Kallmeyer G.,
    6. Langenkamp A.,
    7. Herrmann J.,
    8. Famulare J.
    The potential clinical relevance of visible particles in parenteral drugs. J. Pharm. Sci. 2012, 101 (18), 2635–2644.
    OpenUrlPubMedGoogle Scholar
  3. 3.↵
    1. Walpot H.,
    2. Franke R. P.,
    3. Burchard W. G.,
    4. Agternkamp C.,
    5. Müller F.,
    6. Mittermayer C.,
    7. Klaff G.
    Particulate contamination of intravenous solutions and drug additives during long-term intensive care. Anaesthesist 1989, 38 (10), 544–548.
    OpenUrlPubMedWeb of ScienceGoogle Scholar
  4. 4.↵
    1. Puntis J. W. L.,
    2. Wilkins K. M.,
    3. Ball P. A.,
    4. Rushton D. I.,
    5. Booth I. W.
    Hazards of parenteral treatment: Do particles count? Arch. Dis. Child. 1992, 67 (12), 1475–1477.
    OpenUrlAbstract/FREE Full TextGoogle Scholar
  5. 5.↵
    1. Hellinger A.,
    2. Piotrowski J.,
    3. Konerding M. A.,
    4. Burchard W. G.,
    5. Doetsch N.,
    6. Peitgen K.,
    7. Erhard J.,
    8. Reidemeister J. C.
    Impact of particulate contamination in crystalloid cardioplegic solutions: studies by scanning and transmission electron microscopy. Thorac. Cardiovasc. Surg. 1997, 45 (1), 20–26.
    OpenUrlPubMedWeb of ScienceGoogle Scholar
  6. 6.↵
    1. Jack T.,
    2. Brent B. E.,
    3. Boehne M.,
    4. Müller M.,
    5. Sewald K.,
    6. Braun A.,
    7. Wessel A.,
    8. Sasse M.
    Analysis of particulate contaminations of infusion solutions in a pediatric intensive care unit. Intensive Care Med. 2010, 36 (4), 707–711.
    OpenUrlCrossRefPubMedGoogle Scholar
  7. 7.↵
    1. Sherwood L.
    Human Physiology, from Cells to Systems, 6th ed.; Thomson Brooks/Cole: Belmont, CA, 2007.
    Google Scholar
  8. 8.↵
    1. Parikh M. J.,
    2. Dumas G.,
    3. Silvestri A.,
    4. Bistrian B. R.,
    5. Driscoll D. F.
    Physical compatibility of neonatal total parenteral nutrient admixtures containing organic calcium and inorganic phosphate salts. Am. J. Health-Syst. Pharm. 2005, 62 (11), 1177–1183.
    OpenUrlAbstract/FREE Full TextGoogle Scholar
  9. 9.↵
    1. Lehr H. A.,
    2. Brunner J.,
    3. Rangoonwala R.,
    4. Kirkpatrick C. J.
    Particulate matter contamination of intravenous antibiotics aggravates loss of functional capillary density in postischemic striated muscle. Am. J. Respir. Crit. Care Med. 2002, 165 (4), 514–520.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  10. 10.↵
    1. Ball P. A.
    Intravenous in-line filters: filtering the evidence. Curr. Opin. Clin. Nutr. Metab. Care 2003, 6 (3), 319–325.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  11. 11.↵
    European Pharmacopoeia. 2.9.20. Particulate Contamination: Visible Particles. In European Pharmacopoeia, 8th ed.; Supplement 8.0., 2014.
    Google Scholar
  12. 12.↵
    United States Pharmacopoeia. <1> Injections. In USP 36–NF 31.
    Google Scholar
  13. 13.↵
    Japanese Pharmacopoeia. 6.06. Foreign Insoluble Matter Test for Injections. In Japanese Pharmacopoeia, 16th ed.
    Google Scholar
  14. 14.↵
    European Pharmacopoeia. 2.9.19. Particulate Contamination: Sub-visible Particles. In European Pharmacopoeia, 8th ed.; Supplement 8.0, 2014.
    Google Scholar
  15. 15.↵
    United States Pharmacopoeia. <788> Particulate Matter in Injections; In USP 36-NF 31.
    Google Scholar
  16. 16.↵
    Japanese Pharmacopoeia. 6.07. Insoluble Particulate Matter Test for Injections. In Japanese Pharmacopoeia, 16th ed.
    Google Scholar
  17. 17.↵
    1. Tran T.,
    2. Kupiec T. C.,
    3. Trissel L. A.
    Particulate matter in injections: What is it and what are the concerns? Int. J. Pharm. Compd. 2006, 10 (3), 202–204.
    OpenUrlPubMedGoogle Scholar
  18. 18.↵
    1. Mahler H.-C.,
    2. Jiskoot W.
    1. Smulders R.,
    2. Vos H.,
    3. Mahler H.-C.
    Detection of Visible Particles in Parenteral Products. In Analysis of Aggregates and Particles in Protein Pharmaceuticals, 1st ed.; Mahler H.-C., Jiskoot W., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, 2012; pp 117–132.
    Google Scholar
  19. 19.↵
    1. Newton D. W.
    Drug incompatibility chemistry. Am. J. Health-Syst. Pharm. 2009, 66 (4), 348–357.
    OpenUrlAbstract/FREE Full TextGoogle Scholar
  20. 20.↵
    1. Newton D. W.
    Y-site compatibility of intravenous drugs with parenteral nutrition. Commentary. JPEN J. Parenter. Enteral Nutr. 2013, 37 (3), 297–299.
    OpenUrlFREE Full TextGoogle Scholar
  21. 21.↵
    1. Newton D. W.,
    2. Driscoll D. F.
    Calcium and phosphate compatibility: revisited again. Am. J. Health-Syst. Pharm. 2008, 65 (1), 73–80.
    OpenUrlFREE Full TextGoogle Scholar
  22. 22.↵
    1. Veggeland T.,
    2. Brandl M.
    Evaluation of a simple method for visual detection of microprecipitates in blends of parenteral drug solutions using a focused (Tyndall) light beam. Int. J. Pharm. Compd. 2010, 14 (1), 78–81.
    OpenUrlPubMedGoogle Scholar
  23. 23.↵
    1. Minton A. R.,
    2. Barnett M. I.,
    3. Cosslett A. G.
    Detection of particulate material in parenteral nutrition admixtures. Commentary. Nutrition 1998, 14 (2), 251–252.
    OpenUrlPubMedGoogle Scholar
  24. 24.↵
    1. Trissel L. A.,
    2. Gilbert D. L.,
    3. Martinez J. F.,
    4. Baker M. B.,
    5. Walter W. V.,
    6. Mirtallo J. M.
    Compatibility of parenteral nutrient solutions with selected drugs during simulated Y-site administration. Am. J. Health-Syst. Pharm. 1997, 54 (11), 1295–1300.
    OpenUrlAbstract/FREE Full TextGoogle Scholar
  25. 25.↵
    1. Trissel L. A.,
    2. Gilbert D. L.,
    3. Martinez J. F.,
    4. Baker M. B.,
    5. Walter W. V.,
    6. Mirtallo J. M.
    Compatibility of medications with 3-in-1 parenteral nutrition admixtures. JPEN J. Parenter. Enteral Nutr. 1999, 23 (2), 67–74.
    OpenUrlAbstract/FREE Full TextGoogle Scholar
  26. 26.↵
    1. Husson E.,
    2. Crauste-Manciet S.,
    3. Hadj-Salah E.,
    4. Seguier J.,
    5. Brossard D.
    Compatibility of parenteral drugs with commercialized total parenteral admixtures during simulated Y-site infusion. Nutr. Clin. Métabol. 2003, 17 (2), 72–79.
    OpenUrlGoogle Scholar
  27. 27.↵
    1. Bouchoud L.,
    2. Fonzo-Christe C.,
    3. Klingmüller M.,
    4. Bonnabry P.
    Compatibility of intravenous medications with parenteral nutrition: in vitro evaluation. JPEN J. Parenter. Enteral Nutr. 2013, 37 (3), 416–424.
    OpenUrlAbstract/FREE Full TextGoogle Scholar
  28. 28.↵
    1. Garvan J. M.,
    2. Gunner B. W.
    The harmful effects of particles in intravenous fluids. Med. J. Aust. 1964, 2, 1–6.
    OpenUrlPubMedWeb of ScienceGoogle Scholar
  29. 29.↵
    1. Trissel L. A.,
    2. Martinez J. F.
    Physical compatibility of melphalan with selected drugs during simulated Y-site administration. Am. J. Hosp. Pharm. 1993, 50 (11), 2359–2363.
    OpenUrlAbstractGoogle Scholar
  30. 30.↵
    1. Singh B. N.,
    2. Dedhiya M. G.,
    3. DiNunzio J.,
    4. Chan P.,
    5. Kupiec T. C.,
    6. Trissel L. A.,
    7. Laudano J. B.
    Compatibility of ceftaroline fosamil for injection with selected drugs during simulated Y-site administration. Am. J. Health-Syst. Pharm. 2011, 68 (22), 2163–2169.
    OpenUrlAbstract/FREE Full TextGoogle Scholar
  31. 31.↵
    1. Knapp J. Z.,
    2. Kushner H. K.
    Generalized methodology for evaluation of parenteral inspection procedures. PDA J. Pharm. Sci. Technol. 1980, 34 (1), 14–61.
    OpenUrlAbstract/FREE Full TextGoogle Scholar
  32. 32.↵
    1. Faesen A. C.
    Reproducibility in visual inspection of parenterals. J. Parenter. Drug Assoc. 1978, 32 (2), 75–83.
    OpenUrlPubMedGoogle Scholar
  33. 33.↵
    1. Borchert S. J.,
    2. Maxwell R. J.,
    3. Davison R. L.,
    4. Aldrich D. S.
    Standard particulate sets for visual inspection systems: their preparation, evaluation, and applications. PDA J. Pharm. Sci. Technol. 1986, 40 (6), 265–276.
    OpenUrlAbstract/FREE Full TextGoogle Scholar
  34. 34.↵
    1. Sadeghipour F.,
    2. Bugmann A.,
    3. Herrera V.,
    4. Bonnabry P.
    The reliability of operators when visually inspecting parenteral drugs. Pract. Res. Innov. 2007, 13, 41–45.
    OpenUrlGoogle Scholar
  35. 35.↵
    1. Knapp J. Z.
    The scientific basis for visible particle inspection. PDA J. Pharm. Sci. Technol. 1999, 53 (6), 291–302.
    OpenUrlAbstract/FREE Full TextGoogle Scholar
  36. 36.↵
    1. Gerstman B. B.
    Epidemiology Kept Simple: An Introduction to Traditional and Modern Epidemiology, 2nd ed.; Wiley-Liss: Hoboken, NJ, 2003.
    Google Scholar
  37. 37.↵
    1. Akobeng A. K.
    Understanding diagnostic tests 2: likelihood ratios, pre- and post-test probabilities and their use in clinical practice. Acta Paediatr. 2006, 96 (4), 487–491.
    OpenUrlCrossRefGoogle Scholar
  38. 38.↵
    1. Egger M.,
    2. Smith G. D.,
    3. Altman D. G.
    1. Deeks J. J.
    Systematic Reviews of Evaluations of Diagnostic and Screening Tests. In Systematic Reviews in Health Care Meta-analysis in Context, 2nd ed.; Egger M., Smith G. D., Altman D. G., Eds.; BMJ Publishing Group: London, 2001; pp 248–282.
    Google Scholar
  39. 39.↵
    1. Fleiss J. L.
    Measuring nominal scale agreement among many raters. Psychol. Bull. 1971, 76 (5), 378–382.
    OpenUrlCrossRefGoogle Scholar
  40. 40.↵
    1. Gwet K. L.
    Handbook of Inter-rater Reliability, 3rd ed.; Advanced Analytics, LLC: Gaithersburg, MD, 2012.
    Google Scholar
  41. 41.↵
    1. Landis J. R.,
    2. Koch G. G.
    The measurement of observer agreement for categorical data. Biometrics 1977, 33 (1), 159–174.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  42. 42.↵
    1. Trissel L. A.,
    2. Bready B. B.
    Turbidimetric assessment of the compatibility of taxol with selected other drugs during simulated Y-site injection. Am. J. Hosp. Pharm. 1992, 49 (7), 1716–1719.
    OpenUrlAbstractGoogle Scholar
  43. 43.↵
    European Pharmacopoeia. 2.2.1. Clarity and Degree of Opalescence of Liquids. In European Pharmacopoeia, 8th ed.; Supplement 8.0, 2014.
    Google Scholar
  44. 44.↵
    1. Jaeschke R.,
    2. Guyatt G. H.,
    3. Sackett D. L.
    Users' guide to the medical literature. III How to use an article about a diagnostic test. B. What are the results and will they help me in caring for my patients? JAMA 1994, 271 (9), 703–707.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  45. 45.↵
    Filter Manufacturers Council. Technical Service Bulletin 89-5. The Micron Rating for Media in Fluid Filters. www.aftermarketsuppliers.org/Councils/Filter-Manufacturers-Council/TSBs-2/English/89-5R3.pdf (accessed Mar 10, 2014).
    Google Scholar
  46. 46.↵
    1. Vessey I.,
    2. Kendall C. E.
    Determination of particulate matter in intravenous fluids. Analyst 1966, 91 (1081), 273–279.
    OpenUrlCrossRefPubMedGoogle Scholar
  47. 47.↵
    1. Migaki E. A.,
    2. Melhart B. J.,
    3. Dewar C. J.,
    4. Huston R. K.
    Calcium chloride and sodium phosphate in neonatal parenteral nutrition containing TrophAmine: precipitation studies and aluminum content. JPEN J. Parenter. Enteral Nutr. 2012, 36 (4), 470–475.
    OpenUrlAbstract/FREE Full TextGoogle Scholar
  48. 48.↵
    1. Driscoll D. F.,
    2. Newton D. W.,
    3. Bistrian B. R.
    Potential hazards of precipitation associated with calcium chloride in parenteral nutrition admixtures: response to Migaki et al. JPEN J. Parenter. Enteral Nutr. 2012, 36 (5), 497–498.
    OpenUrlFREE Full TextGoogle Scholar
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 69 (2)
PDA Journal of Pharmaceutical Science and Technology
Vol. 69, Issue 2
March/April 2015
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Email Article
Citation Tools
Share
Utilization of the Tyndall Effect for Enhanced Visual Detection of Particles in Compatibility Testing of Intravenous Fluids: Validity and Reliability
Vigdis Staven, Marit Waaseth, Siri Wang, Ingrid Grønlie, Ingunn Tho
PDA Journal of Pharmaceutical Science and Technology Mar 2015, 69 (2) 270-283; DOI: 10.5731/pdajpst.2015.01020
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results and Discussion
    • Conflict of Interest Declaration
    • Acknowledgements
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Physical stability of an all-in-one parenteral nutrition admixture for preterm infants upon mixing with micronutrients and drugs
  • Semi-Quantitative Analysis of Inherent Visible Particles for Biopharmaceutical Products
  • Google Scholar

More in this TOC Section

  • Analysis of Virus Clearance for Biotechnology Manufacturing Processes from Early to Late Phase Development
  • Coring and Fragmentation of Elastomeric Needle Shield in a Pre-Filled Syringe
  • Worldwide Regulatory Reliance: Results of an Executed Chemistry, Manufacturing, and Control Post-Approval Change Pilot
Show more Research

Similar Articles

Keywords

  • Sub-visual particles
  • Total parenteral nutrition
  • TPN
  • Parenterals
  • Inter-rater Reliability
  • Incompatibility
  • PocketLaser pointer

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire
Alerts for this Article
Sign In to Email Alerts with your Email Address
Email this Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Utilization of the Tyndall Effect for Enhanced Visual Detection of Particles in Compatibility Testing of Intravenous Fluids: Validity and Reliability
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
2 + 5 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Utilization of the Tyndall Effect for Enhanced Visual Detection of Particles in Compatibility Testing of Intravenous Fluids: Validity and Reliability
Vigdis Staven, Marit Waaseth, Siri Wang, Ingrid Grønlie, Ingunn Tho
PDA Journal of Pharmaceutical Science and Technology Mar 2015, 69 (2) 270-283; DOI: 10.5731/pdajpst.2015.01020

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

We use cookies on this site to enhance your user experience

By clicking any link on this page you are giving your consent for us to set cookies.