Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Case ReportCase Studies

Reciprocal Translocation Observed in End-of-Production Cells of a Commercial CHO-Based Process

Yolande Rouiller, Beate Kleuser, Emiliano Toso, Wolf Palinksy, Mara Rossi, Paola Rossatto, Davide Barberio and Hervé Broly
PDA Journal of Pharmaceutical Science and Technology July 2015, 69 (4) 540-552; DOI: https://doi.org/10.5731/pdajpst.2015.01063
Yolande Rouiller
1Merck Serono SA, Corsier-sur-Vevey, Biotech Process Sciences, Fenil-sur-Corsier, Switzerland;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: yolande.rouiller@merckgroup.com
Beate Kleuser
1Merck Serono SA, Corsier-sur-Vevey, Biotech Process Sciences, Fenil-sur-Corsier, Switzerland;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Emiliano Toso
2Istituto Ricerche Biomediche Antoine Marxer RBM, Merck Group, MS-TDS-B2 Department, Colleretto Giacosa, Italy;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wolf Palinksy
3Merck Serono SA, Global Research and Development, Coinsins, Switzerland;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mara Rossi
4Merck Serono S.p.A., MS-TDA-P Department, Guidonia Montecelio, Italy; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Paola Rossatto
2Istituto Ricerche Biomediche Antoine Marxer RBM, Merck Group, MS-TDS-B2 Department, Colleretto Giacosa, Italy;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Davide Barberio
5Bioclarma srl, Torino, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hervé Broly
1Merck Serono SA, Corsier-sur-Vevey, Biotech Process Sciences, Fenil-sur-Corsier, Switzerland;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Wuest D. M.,
    2. Harcum S. W.,
    3. Lee K. H.
    Genomics in mammalian cell culture bioprocessing. Biotechnol. Adv. 2012, 30 (3), 629–638.
    OpenUrlPubMed
  2. 2.↵
    1. Barnes L. M.,
    2. Bentley C. M.,
    3. Dickson A. J.
    Stability of protein production from recombinant mammalian cells. Biotechnol Bioeng. 2003, 81 (6), 631–639.
    OpenUrlCrossRefPubMedWeb of Science
  3. 3.↵
    1. Dorai H.,
    2. Corisdeo S.,
    3. Ellis D.,
    4. Kinney C.,
    5. Chomo M.,
    6. Hawley-Nelson P.,
    7. Moore G.,
    8. Betenbaugh M. J.,
    9. Ganguly S.
    Early prediction of instability of chinese hamster ovary cell lines expressing recombinant antibodies and antibody-fusion proteins. Biotechnol. Bioeng. 2012, 109 (4), 1016–1030.
    OpenUrlPubMed
  4. 4.↵
    1. Chuck A. S.,
    2. Palsson B. O.
    Population balance between producing and nonproducing hybridoma clones is very sensitive to serum level, state of inoculum, and medium composition. Biotechnol. Bioeng. 1992, 39 (3), 354–360.
    OpenUrlPubMed
  5. 5.↵
    1. Frame K. K.,
    2. Hu W. S.
    The loss of antibody productivity in continuous culture of hybridoma cells. Biotechnol. Bioeng. 1990, 35 (5), 469–476.
    OpenUrlCrossRefPubMed
  6. 6.↵
    1. Dunn B. P.,
    2. Curtis J. R.
    Clastogenic agents in the urine of coffee drinkers and cigarette smokers. Mutat. Res. 1985, 147 (4), 179–188.
    OpenUrlPubMed
  7. 7.↵
    1. Hacker D. L.,
    2. De Jesus M.,
    3. Wurm F. M.
    25 years of recombinant proteins from reactor-grown cells—Where do we go from here? Biotechnol. Adv. 2009, 27 (6), 1023–1027.
    OpenUrlCrossRefPubMed
  8. 8.↵
    1. Jayapal K. P.,
    2. Wlaschin K. F.,
    3. Hu W. S.,
    4. Yap M. G. S.
    Recombinant protein therapeutics from CHO cells—20 years and counting. Chem. Enging. Prog. 2007, 103 (10), 40–47.
    OpenUrl
  9. 9.↵
    1. Kim J. Y.,
    2. Kim Y. G.,
    3. Lee G. M.
    CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl. Microbiol. Biotechnol. 2012, 93 (3), 917–930.
    OpenUrlCrossRefPubMedWeb of Science
  10. 10.↵
    1. Wurm F. M.
    Production of recombinant protein therapeutics in cultivated mammalian cells. Nat. Biotechnol. 2004, 22 (11), 1393–1398.
    OpenUrlCrossRefPubMedWeb of Science
  11. 11.↵
    1. Cao Y.,
    2. Kimura S.,
    3. Itoi T.,
    4. Honda K.,
    5. Ohtake H.,
    6. Omasa T.
    Fluorescence in situ hybridization using bacterial artificial chromosome (BAC) clones for the analysis of chromosome rearrangement in Chinese hamster ovary cells. Methods 2012, 56 (3), 418–423.
    OpenUrlPubMed
  12. 12.↵
    1. Cao Y.,
    2. Kimura S.,
    3. Itoi T.,
    4. Honda K.,
    5. Ohtake H.,
    6. Omasa T.
    Construction of BAC-based physical map and analysis of chromosome rearrangement in Chinese hamster ovary cell lines. Biotechnol. Bioeng. 2012, 109 (6), 1357–1367.
    OpenUrlCrossRefPubMed
  13. 13.↵
    1. Davies J.,
    2. Reff M.
    Chromosome localization and gene-copy-number quantification of three random integrations in Chinese-hamster ovary cells and their amplified cell lines using fluorescence in situ hybridization. Biotechnol. Appl. Biochem. 2001, 33 (2), 99–105.
    OpenUrlCrossRefPubMed
  14. 14.↵
    1. Wurm F.
    CHO Quasispecies—implications for manufacturing processes. Processes 2013, 1 (3), 296–311.
    OpenUrl
  15. 15.↵
    1. Derouazi M.,
    2. Martinet D.,
    3. Besuchet Schmutz N.,
    4. Flaction R.,
    5. Wicht M.,
    6. Bertschinger M.,
    7. Hacker D. L.,
    8. Beckmann J. S.,
    9. Wurm F. M.
    Genetic characterization of CHO production host DG44 and derivative recombinant cell lines. Biochem. Biophys. Res. Comm. 2006, 340 (4), 1069–1077.
    OpenUrlCrossRefPubMedWeb of Science
  16. 16.↵
    1. Worton R. G.,
    2. Ho C. C.,
    3. Duff C.
    Chromosome stability in CHO cells. Somatic Cell Genet. 1977, 3 (1), 27–45.
    OpenUrlCrossRefPubMedWeb of Science
  17. 17.↵
    1. Ruiz J. C.,
    2. Wahl G. M.
    Chromosomal destabilization during gene amplification. Mol. Cell. Biol. 1990, 10 (6), 3056–3066.
    OpenUrlAbstract/FREE Full Text
  18. 18.↵
    1. Kim N. S.,
    2. Kim S. J.,
    3. Lee G. M.
    Clonal variability within dihydrofolate reductase-mediated gene amplified Chinese hamster ovary cells: stability in the absence of selective pressure. Biotechnol. Bioeng. 1998, 60 (6), 679–688.
    OpenUrlCrossRefPubMed
  19. 19.↵
    1. Yoshikawa T.,
    2. Nakanishi F.,
    3. Ogura Y.,
    4. Oi D.,
    5. Omasa T.,
    6. Katakura Y.,
    7. Kishimoto M.,
    8. Suga K.
    Amplified gene location in chromosomal DNA affected recombinant protein production and stability of amplified genes. Biotechnol. Prog. 2000, 16 (5), 710–715.
    OpenUrlPubMed
  20. 20.↵
    1. O'Callaghan P. M.,
    2. James D. C.
    Systems biotechnology of mammalian cell factories. Briefings in Functional Genomics and Proteomics 2008, 7 (2), 95–110.
    OpenUrlAbstract/FREE Full Text
  21. 21.↵
    1. Fann C. H.,
    2. Guirgis F.,
    3. Chen G.,
    4. Lao M. S.,
    5. Piret J. M.
    Limitations to the amplification and stability of human tissue-type plasminogen activator expression by Chinese hamster ovary cells. Biotechnol. Bioeng. 2000, 69 (2), 204–212.
    OpenUrlPubMed
  22. 22.↵
    1. Kim S. J.,
    2. Lee G. M.
    Cytogenetic analysis of chimeric antibody-producing CHO cells in the course of dihydrofolate reductase-mediated gene amplification and their stability in the absence of selective pressure. Biotechnol. Bioeng. 1999, 64 (6), 741–749.
    OpenUrlPubMed
  23. 23.↵
    1. Xu X.,
    2. Nagarajan H.,
    3. Lewis N. E.,
    4. Pan S.,
    5. Cai Z.,
    6. Liu X.,
    7. Chen W.,
    8. Xie M.,
    9. Wang W.,
    10. Hammond S.,
    11. Andersen M. R.,
    12. Neff N.,
    13. Passarelli B.,
    14. Koh W.,
    15. Fan H. C.,
    16. Wang J.,
    17. Gui Y.,
    18. Lee K. H.,
    19. Betenbaugh M. J.,
    20. Quake S. R.,
    21. Famili I.,
    22. Palsson B. O.,
    23. Wang J.
    The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat. Biotechnol. 2011, 29 (8), 735–741.
    OpenUrlCrossRefPubMed
  24. 24.↵
    1. Kantardjieff A.,
    2. Nissom P. M.,
    3. Chuah S. H.,
    4. Yusufi F.,
    5. Jacob N. M.,
    6. Mulukutla B. C.,
    7. Yap M.,
    8. Hu W. S.
    Developing genomic platforms for Chinese hamster ovary cells. Biotechnol. Adv. 2009, 27 (6), 1028–1035.
    OpenUrlPubMed
  25. 25.↵
    1. Brinkrolf K.,
    2. Rupp O.,
    3. Laux H.,
    4. Kollin F.,
    5. Ernst W.,
    6. Linke B.,
    7. Kofler R.,
    8. Romand S.,
    9. Hesse F.,
    10. Budach W. E.,
    11. Galosy S.,
    12. Müller D.,
    13. Noll T.,
    14. Wienberg J.,
    15. Jostock T.,
    16. Leonard M.,
    17. Grillari J.,
    18. Tauch A.,
    19. Goesmann A.,
    20. Helk. B.,
    21. Mott J. E.,
    22. Pühler A.,
    23. Borth N.
    Chinese hamster genome sequenced from sorted chromosomes. Nat. Biotechnol. 2013, 31 (8), 694–695.
    OpenUrlPubMed
  26. 26.↵
    1. Lewis N. E.,
    2. Liu X.,
    3. Li Y.,
    4. Nagarajan H.,
    5. Yerganian G.,
    6. O'Brien E.,
    7. Bordbar A.,
    8. Roth A. M.,
    9. Rosenbloom J.,
    10. Bian C.,
    11. Xie M.,
    12. Chen W.,
    13. Li N.,
    14. Baycin-Hizal D.,
    15. Latif H.,
    16. Forster J.,
    17. Betenbaugh M. J.,
    18. Famili I.,
    19. Xu X.,
    20. Wang J.,
    21. Palsson B. O.
    Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome. Nat. Biotechnol. 2013, 31 (8), 759–765.
    OpenUrlCrossRefPubMed
  27. 27.↵
    1. Hammill L.,
    2. Welles J.,
    3. Carson G. R.
    The gel microdrop secretion assay: Identification of a low productivity subpopulation arising during the production of human antibody in CHO cells. Cytotechnol. 2000, 34 (1–2), 27–37.
    OpenUrl
  28. 28.↵
    1. Kim S. J.,
    2. Kim N. S.,
    3. Ryu C. J.,
    4. Hong H. J.,
    5. Lee G. M.
    Characterization of chimeric antibody producing CHO cells in the course of dihydrofolate reductase–mediated gene amplification and their stability in the absence of selective pressure. Biotechnol. Bioeng. 1998, 58 (1), 73–84.
    OpenUrlCrossRefPubMedWeb of Science
  29. 29.↵
    1. Pallavicini M. G.,
    2. Deteresa P. S.,
    3. Rosette C.,
    4. Gray J. W.,
    5. Wurm F. M.
    Effects of methotrexate on transfected DNA stability in mammalian cells. Mol. Cell. Biol. 1990, 10 (1), 401–404.
    OpenUrlAbstract/FREE Full Text
  30. 30.↵
    1. He L.,
    2. Winterrowd C.,
    3. Kadura I.,
    4. Frye C.
    Transgene copy number distribution profiles in recombinant CHO cell lines revealed by single cell analyses. Biotechnol. Bioengin. 2012, 109 (7), 1713–1722.
    OpenUrlPubMed
  31. 31.↵
    1. Yoshikawa T.,
    2. Nakanishi F.,
    3. Itami S.,
    4. Kameoka D.,
    5. Omasa T.,
    6. Katakura Y.,
    7. Kishimoto M.,
    8. Suga K. I.
    Evaluation of stable and highly productive gene amplified CHO cell line based on the location of amplified genes. Cytotechnol. 2000, 33 (1–3), 37–46.
    OpenUrl
  32. 32.↵
    1. Kilburn A. E.,
    2. Shea M. J.,
    3. Sargent R. G.,
    4. Wilson J. H.
    Insertion of a telomere repeat sequence into a mammalian gene causes chromosome instability. Mol. Cell. Biol. 2001, 21 (1), 126–135.
    OpenUrlAbstract/FREE Full Text
  33. 33.↵
    1. Bolzán A. D.,
    2. Páez G. L.,
    3. Bianchi M. S.
    FISH analysis of telomeric repeat sequences and their involvement in chromosomal aberrations induced by radiomimetic compounds in hamster cells. Mutat. Res. 2001, 479 (1), 187–196.
    OpenUrlPubMedWeb of Science
  34. 34.↵
    1. Chusainow J.,
    2. Yang Y. S.,
    3. Yeo J. H.,
    4. Toh P. C.,
    5. Asvadi P.,
    6. Wong N. S.,
    7. Yap M. G.
    A study of monoclonal antibody-producing CHO cell lines: What makes a stable high producer? Biotechnol. Bioeng. 2009, 102 (4), 1182–1196.
    OpenUrlCrossRefPubMed
  35. 35.↵
    1. Pinkel D.,
    2. Straume T.,
    3. Gray J. W.
    Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc. Natl. Acad. Sci. of the U.S.A. 1986, 83 (9), 2934–2938.
    OpenUrl
  36. 36.↵
    1. Ried T.,
    2. Schröck E.,
    3. Ning Y.,
    4. Wienberg J.
    Chromosome painting: a useful art. Hum. Mol. Genet. 1998, 7 (10), 1619–1626.
    OpenUrlAbstract/FREE Full Text
  37. 37.↵
    1. Speicher M. R.,
    2. Carter N. P.
    The new cytogenetics: blurring the boundaries with molecular biology. Nat. Rev. Genet. 2005, 6 (10), 782–792.
    OpenUrlCrossRefPubMedWeb of Science
  38. 38.↵
    1. Ishidate M. Jr..,
    2. Harnois M. C.,
    3. Sofuni T.
    A comparative analysis of data on the clastogenicity of 951 chemical substances tested in mammalian cell cultures. Mutat. Res. 1988, 195 (2), 151–213.
    OpenUrlPubMedWeb of Science
  39. 39.↵
    1. Witte I.,
    2. Plappert U.,
    3. de Wall H.,
    4. Hartmann A.
    Genetic toxicity assessment: employing the best science for human safety evaluation. Part III: The comet assay as an alternative to in vitro clastogenicity tests for early drug candidate selection. Toxicol. Sci. 2007, 97 (1), 21–26.
    OpenUrlAbstract/FREE Full Text
  40. 40.↵
    1. Flintoff W. F.,
    2. Livingston E.,
    3. Duff C.,
    4. Worton R. G.
    Moderate-level gene amplification in methotrexate-resistant Chinese hamster ovary cells is accompanied by chromosomal translocations at or near the site of the amplified DHFR gene. Mol. Cell. Biol. 1984, 4 (1), 69–76.
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 69 (4)
PDA Journal of Pharmaceutical Science and Technology
Vol. 69, Issue 4
July/August 2015
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Reciprocal Translocation Observed in End-of-Production Cells of a Commercial CHO-Based Process
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
1 + 1 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Reciprocal Translocation Observed in End-of-Production Cells of a Commercial CHO-Based Process
Yolande Rouiller, Beate Kleuser, Emiliano Toso, Wolf Palinksy, Mara Rossi, Paola Rossatto, Davide Barberio, Hervé Broly
PDA Journal of Pharmaceutical Science and Technology Jul 2015, 69 (4) 540-552; DOI: 10.5731/pdajpst.2015.01063

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Reciprocal Translocation Observed in End-of-Production Cells of a Commercial CHO-Based Process
Yolande Rouiller, Beate Kleuser, Emiliano Toso, Wolf Palinksy, Mara Rossi, Paola Rossatto, Davide Barberio, Hervé Broly
PDA Journal of Pharmaceutical Science and Technology Jul 2015, 69 (4) 540-552; DOI: 10.5731/pdajpst.2015.01063
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Conflict of Interest Declaration
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • Crispr/Cas9 Targeted Capture of Mammalian Genomic Regions for Characterization by NGS
  • Google Scholar

More in this TOC Section

  • Phase-Incremental Decision Trees for Multi-Phase Feature Selection and Interaction in Biologics Manufacturing
  • Practical Application of Setting up an Annual Contamination Control Strategy (CCS) Assessment
  • A Risk Assessment and Risk Based Approach Review of Pre-use/Post Sterilization Integrity Testing (PUPSIT)
Show more Case Studies

Similar Articles

Keywords

  • Commercial process
  • Recombinant protein
  • CHO cells
  • Validation
  • Cell banks
  • Genetics

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire