Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleResearch

Hydrolysis of Polysorbate 20 and 80 by a Range of Carboxylester Hydrolases

Andrew C. McShan, Pervina Kei, Junyan A. Ji, Daniel C. Kim and Y. John Wang
PDA Journal of Pharmaceutical Science and Technology July 2016, 70 (4) 332-345; DOI: https://doi.org/10.5731/pdajpst.2015.005942
Andrew C. McShan
1Department of Late Stage Pharmaceutical Development, Genentech, Inc., South San Francisco, CA 94080;
3Department of Molecular Biosciences, University of Kansas, Lawrence, KS;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pervina Kei
2Department of Early Stage Pharmaceutical Development, Genentech, Inc., South San Francisco, CA 94080;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Junyan A. Ji
1Department of Late Stage Pharmaceutical Development, Genentech, Inc., South San Francisco, CA 94080;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Daniel C. Kim
1Department of Late Stage Pharmaceutical Development, Genentech, Inc., South San Francisco, CA 94080;
4Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y. John Wang
1Department of Late Stage Pharmaceutical Development, Genentech, Inc., South San Francisco, CA 94080;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: wang.john@gene.com
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Kerwin B. A.
    Polysorbates 20 and 80 Used in the Formulation of Protein Biotherapeutics: Structure and Degradation Pathways. J. Pharm. Sci. 2008, 97 (8), 2924–2935.
    OpenUrlCrossRefPubMed
  2. 2.↵
    1. Chang B. S.,
    2. Kendrick B. S.,
    3. Carpenter J. F.
    Surface-Induced Denaturation of Proteins during Freezing and Its Inhibition by Surfactants. J. Pharm. Sci. 1996, 85 (12), 1325–1330.
    OpenUrlCrossRefPubMedWeb of Science
  3. 3.↵
    1. Mahler H. C.,
    2. Muller R.,
    3. Friess W.,
    4. Delille A.,
    5. Matheus S.
    Induction and Analysis of Aggregates in a Liquid IgG1-Antibody Formulation. Eur. J. Pharm. Biopharm. 2005, 59 (3), 407–417.
    OpenUrlCrossRefPubMed
  4. 4.↵
    1. Thackaberry E. A.,
    2. Kopytek S.,
    3. Sherratt P.,
    4. Trouba K.,
    5. McIntyre B.
    Comprehensive Investigation of Hydroxypropyl Methylcellulose, Propylene Glycol, Polysorbate 80, and Hydroxypropyl-beta-cyclodextrin for Use in General Toxicology Studies. Toxicol. Sci. 2010, 117 (2), 485–492.
    OpenUrlAbstract/FREE Full Text
  5. 5.↵
    1. Zhang R.,
    2. Wang Y.,
    3. Tan L.,
    4. Zhang H. Y.,
    5. Yang M.
    Analysis of Polysorbate 80 and Its Related Compounds by RP-HPLC with ELSD and MS Detection. J. Chromatogr. Sci. 2012, 50 (7), 598–607.
    OpenUrlAbstract/FREE Full Text
  6. 6.↵
    1. Kishore R. S.,
    2. Kiese S.,
    3. Fischer S.,
    4. Pappenberger A.,
    5. Grauschopf U.,
    6. Mahler H. C.
    The Degradation of Polysorbates 20 and 80 and Its Potential Impact on the Stability of Biotherapeutics. Pharm. Res. 2011, 28 (5), 1194–1210.
    OpenUrlPubMed
  7. 7.↵
    1. Brandner J. D.
    The Composition of NF-Defined Emulsifiers: Sorbitan Monolaurate, Monopalmitate, Monostearate, Monooleate, Polysorbate 20, Polysorbate 40, Polysorbate 60, and Polysorbate 80. Drug Dev. Ind. Pharm. 1998, 24 (11), 1049–1054.
    OpenUrlPubMed
  8. 8.↵
    1. Borisov O. V.,
    2. Ji J. A.,
    3. Wang Y. J.
    Oxidative Degradation of Polysorbate Surfactants Studied by Liquid Chromatography–Mass Spectrometry. J. Pharm. Sci. 2015, 104 (3), 1005–1018.
    OpenUrlPubMed
  9. 9.↵
    1. Hewitt D.,
    2. Zhang T.,
    3. Kao Y. H.
    Quantitation of Polysorbate 20 in Protein Solutions Using Mixed-Mode Chromatography and Evaporative Light Scattering Detection. J. Chromatogr., A 2008, 1215 (1–2), 156–160.
    OpenUrlCrossRefPubMedWeb of Science
  10. 10.↵
    1. Ayorinde F. O.,
    2. Gelain S. V.,
    3. Johnson J. H. Jr..,
    4. Wan L. W.
    Analysis of Some Commercial Polysorbate Formulations Using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 2000, 14 (22), 2116–2124.
    OpenUrlCrossRefPubMedWeb of Science
  11. 11.↵
    1. Donbrow M.,
    2. Azaz E.,
    3. Pillersdorf A.
    Autoxidation of Polysorbates. J. Pharm. Sci. 1978, 67 (12), 1676–1681.
    OpenUrlCrossRefPubMed
  12. 12.↵
    1. Bates T. R.,
    2. Nightingale C. H.,
    3. Dixon E.
    Kinetics of Hydrolysis of Polyoxyethylene (20) Sorbitan Fatty Acid Ester Surfactants. J. Pharm. Pharmacol. 1973, 25 (6), 470–477.
    OpenUrlPubMed
  13. 13.↵
    1. Labrenz S. R.
    Ester Hydrolysis of Polysorbate 80 in mAb Drug Product: Evidence in Support of the Hypothesized Risk after the Observation of Visible Particulate in mAb Formulations. J. Pharm. Sci. 2014, 103 (8), 2268–2277.
    OpenUrlPubMed
  14. 14.↵
    1. Cao X.,
    2. Fesinmeyer R. M.,
    3. Pierini C. J.,
    4. Siska C. C.,
    5. Litowski J. R.,
    6. Brych S.,
    7. Wen Z. Q.,
    8. Kleemann G. R.
    Free Fatty Acid Particles in Protein Formulations, Part 1: Microspectroscopic Identification. J. Pharm. Sci. 2015, 104 (2), 433–446.
    OpenUrlPubMed
  15. 15.↵
    1. Tomioka H.
    Purification and Characterization of the Tween-Hydrolyzing Esterase of Mycobacterium smegmatis. J. Bacteriol. 1983, 155 (3), 1249–1259.
    OpenUrlPubMed
  16. 16.↵
    1. Stefanidis D.,
    2. Jencks W. P.
    General Base Catalysis of Ester Hydrolysis. J. Am. Chem. Soc. 1993, 115 (14), 6045–6050.
    OpenUrl
  17. 17.↵
    1. Lonon M. K.,
    2. Woods D. E.,
    3. Straus D. C.
    Production of Lipase by Clinical Isolates of Pseudomonas cepacia. J. Clin. Microbiol. 1988, 26 (5), 979–984.
    OpenUrlPubMed
  18. 18.↵
    1. Janda K.
    The Lipolytic Activity of Thermomyces lanuginosus Strains Isolated from Different Natural Sources. International Biodeterioration & Biodegradation 2005, 55 (2), 149–152.
    OpenUrl
  19. 19.↵
    1. Parker S. K.,
    2. Curtin K. M.,
    3. Vasil M. L.
    Purification and Characterization of Mycobacterial Phospholipase A: An Activity Associated with Mycobacterial Cutinase. J. Bacteriol. 2007, 189 (11), 4153–4160.
    OpenUrlAbstract/FREE Full Text
  20. 20.↵
    1. Sandstrom A. G.,
    2. Wikmark Y.,
    3. Engstrom K.,
    4. Nyhlen J.,
    5. Backvall J. E.
    Combinatorial Reshaping of the Candida antarctica Lipase A Substrate Pocket for Enantioselectivity Using an Extremely Condensed Library. Proc. Natl. Acad. Sci. USA 2012, 109 (1), 78–83.
    OpenUrlAbstract/FREE Full Text
  21. 21.↵
    1. Chahinian H.,
    2. Sarda L.
    Distinction between Esterases and Lipases: Comparative Biochemical Properties of Sequence-Related Carboxylesterases. Protein Pept. Lett. 2009, 16 (10), 1149–1161.
    OpenUrlCrossRefPubMed
  22. 22.↵
    1. Pratt J.,
    2. Cooley J. D.,
    3. Purdy C. W.,
    4. Straus D. C.
    Lipase Activity from Strains of Pasteurella multocida. Curr. Microbiol. 2000, 40 (5), 306–309.
    OpenUrlPubMed
  23. 23.↵
    1. Bendikiene V.,
    2. Surinenaite B.,
    3. Juodka B.,
    4. Safarikova M.
    Insights into Catalytic Action Mechanism of Pseudomonas mendocina 3121-1 Lipase. Enzyme Microb. Tech. 2004, 34 (6), 572–577.
    OpenUrl
  24. 24.↵
    1. Chahinian H.,
    2. Nini L.,
    3. Boitard E.,
    4. Dubes J. P.,
    5. Comeau L. C.,
    6. Sarda L.
    Distinction between Esterases and Lipases: A Kinetic Study with Vinyl Esters and TAG. Lipids 2002, 37 (7), 653–662.
    OpenUrlCrossRefPubMedWeb of Science
  25. 25.↵
    1. Rudek W.
    Esterase Activity in Candida Species. J. Clin. Microbiol. 1978, 8 (6), 756–759.
    OpenUrlAbstract/FREE Full Text
  26. 26.↵
    1. Siska C. C.,
    2. Pierini C. J.,
    3. Lau H. R.,
    4. Latypov R. F.,
    5. Fesinmeyer R. M.,
    6. Litowski J. R.
    Free Fatty Acid Particles in Protein Formulations, Part 2: Contribution of Polysorbate Raw Material. J. Pharm. Sci. 2015, 104 (2), 447–456.
    OpenUrlPubMed
  27. 27.↵
    1. Levy N. E.,
    2. Valente K. N.,
    3. Choe L. H.,
    4. Lee K. H.,
    5. Lenhoff A. M.
    Identification and Characterization of Host Cell Protein Product–Associated Impurities in Monoclonal Antibody Bioprocessing. Biotechnol. Bioeng. 2014, 111 (5), 904–912.
    OpenUrl
  28. 28.↵
    1. Valente K. N.,
    2. Schaefer A. K,
    3. Kempton H. R.,
    4. Lenhoff A. M.,
    5. Lee K. H.
    Recovery of Chinese Hamster Ovary Host Cell Proteins for Proteomic Analysis. Biotechnol. J. 2014, 9 (1), 87–99.
    OpenUrlPubMed
  29. 29.↵
    1. Hewitt D.,
    2. Alvarez M.,
    3. Robinson K.,
    4. Ji J.,
    5. Wang Y. J.,
    6. Kao Y. H.,
    7. Zhang T.
    Mixed-Mode and Reversed-Phase Liquid Chromatography–Tandem Mass Spectrometry Methodologies To Study Composition and Base Hydrolysis of Polysorbate 20 and 80. J. Chromatogr., A 2011, 1218 (15), 2138–2145.
    OpenUrlPubMed
  30. 30.↵
    1. Nayak V. S.,
    2. Tan Z.,
    3. Ihnat P. M,
    4. Russell R. J.,
    5. Grace M. J.
    Evaporative Light Scattering Detection–Based HPLC Method for the Determination of Polysorbate 80 in Therapeutic Protein Formulations. J. Chromatogr. Sci. 2012, 50 (1), 21–25.
    OpenUrlAbstract/FREE Full Text
  31. 31.↵
    1. Matte C. R.,
    2. Bussamara R.,
    3. Dupont J.,
    4. Rodrigues R. C.,
    5. Hertz P. F.,
    6. Ayub M. A.
    Immobilization of Thermomyces lanuginosus Lipase by Different Techniques on Immobead 150 Support: Characterization and Applications. Appl. Biochem. Biotechnol. 2014, 172 (5), 2507–2520.
    OpenUrlPubMed
  32. 32.↵
    1. Li Y.,
    2. Hewitt D.,
    3. Lentz Y. K.,
    4. Ji J. A.,
    5. Zhang T. Y.,
    6. Zhang K.
    Characterization and Stability Study of Polysorbate 20 in Therapeutic Monoclonal Antibody Formulation by Multidimensional Ultrahigh-Performance Liquid Chromatography-Charged Aerosol Detection–Mass Spectrometry. Anal. Chem. 2014, 86 (10), 5150–5157.
    OpenUrl
  33. 33.↵
    1. Wickham M.,
    2. Wilde P.,
    3. Fillery-Travis A.
    A Physicochemical Investigation of Two Phosphatidylcholine/Bile Salt Interfaces: Implications for Lipase Activation. Biochim.Biophys. Acta. 2002, 1580 (2–3), 110–122.
    OpenUrlPubMed
  34. 34.↵
    1. Verger R.
    ‘Interfacial Activation’ of Lipases: Facts and Artifacts. Trends Biotechnol. 1997, 15 (1), 32–38.
    OpenUrlCrossRefWeb of Science
  35. 35.↵
    1. Patist A.,
    2. Bhagwat S. S.,
    3. Penfield K. W.,
    4. Aikens P.,
    5. Shah D. O.
    On the Measurement of Critical Micelle Concentrations of Pure and Technical-Grade Nonionic Surfactants. J. Surfactants Deterg. 2000, 3 (1), 53–58.
    OpenUrlCrossRef
  36. 36.↵
    1. Wan L. S.,
    2. Lee P. F.
    CMC of Polysorbates. J. Pharm. Sci. 1974, 63 (1), 136–137.
    OpenUrlCrossRefPubMed
  37. 37.↵
    1. Plou F. J.,
    2. Ferrer M.,
    3. Nuero O. M.,
    4. Calvo M. V.,
    5. Alcalde M.,
    6. Reyes F.,
    7. Ballesteros A.
    Analysis of Tween 80 as an Esterase/Lipase Substrate for Lipolytic Activity Assay. Biotechnol. Techniq. 1998, 12 (3), 183–186.
    OpenUrl
  38. 38.↵
    1. Hodzic A.,
    2. Llusa M.,
    3. Fraser S. D.,
    4. Scheibelhofer O.,
    5. Koller D. M.,
    6. Reiter F.,
    7. Laggner P.,
    8. Khinast J. G.
    Small- and Wide-Angle X-ray Scattering (SWAXS) for Quantification of Sspirin Content in a Binary Powder Mixture. Int. J Pharm. 2012, 428 (1–2), 91–95.
    OpenUrlPubMed
  39. 39.↵
    1. Chadha R.,
    2. Haneef J.
    Near-Infrared Spectroscopy: Effective Tool for Screening of Polymorphs in Pharmaceuticals. Appl. Spectrosc. Rev. 2015, 50 (7), 565–583.
    OpenUrl
  40. 40.↵
    1. Welch D. F.
    Applications of Cellular Fatty Acid Analysis. Clin. Microbiol. Rev. 1991, 4 (4), 422–438.
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 70 (4)
PDA Journal of Pharmaceutical Science and Technology
Vol. 70, Issue 4
July/August 2016
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Hydrolysis of Polysorbate 20 and 80 by a Range of Carboxylester Hydrolases
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
11 + 4 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Hydrolysis of Polysorbate 20 and 80 by a Range of Carboxylester Hydrolases
Andrew C. McShan, Pervina Kei, Junyan A. Ji, Daniel C. Kim, Y. John Wang
PDA Journal of Pharmaceutical Science and Technology Jul 2016, 70 (4) 332-345; DOI: 10.5731/pdajpst.2015.005942

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Hydrolysis of Polysorbate 20 and 80 by a Range of Carboxylester Hydrolases
Andrew C. McShan, Pervina Kei, Junyan A. Ji, Daniel C. Kim, Y. John Wang
PDA Journal of Pharmaceutical Science and Technology Jul 2016, 70 (4) 332-345; DOI: 10.5731/pdajpst.2015.005942
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Conflict of Interest Declaration
    • Acknowledgements
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Physicochemical Excipient-Container Interactions in Prefilled Syringes and Their Impact on Syringe Functionality
  • Profiling Active Enzymes for Polysorbate Degradation in Biotherapeutics by Activity-Based Protein Profiling
  • Functional Redundancy in Local Spatial Scale Microbial Communities Suggest Stochastic Processes at an Urban Wilderness Preserve in Austin, TX, USA
  • Google Scholar

More in this TOC Section

  • Quantitative and Qualitative Evaluation of Microorganism Profile Identified in Bioburden Analysis in a Biopharmaceutical Facility in Brazil: Criteria for Classification and Management of Results
  • Evaluation of Extreme Depyrogenation Conditions on the Surface Hydrolytic Resistance of Glass Containers for Pharmaceutical Use
  • A Holistic Approach for Filling Volume Variability Evaluation and Control with Statistical Tool
Show more Research

Similar Articles

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire