Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleResearch

Qualification of a Quantitative Method for Monitoring Aspartate Isomerization of a Monoclonal Antibody by Focused Peptide Mapping

Mingyan Cao, Wenjun (David) Mo, Anthony Shannon, Ziping Wei, Michael Washabaugh and Patricia Cash
PDA Journal of Pharmaceutical Science and Technology November 2016, 70 (6) 490-507; DOI: https://doi.org/10.5731/pdajpst.2015.006239
Mingyan Cao
Analytical Biotechnology Department, MedImmune Inc, Gaithersburg, MD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wenjun (David) Mo
Analytical Biotechnology Department, MedImmune Inc, Gaithersburg, MD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anthony Shannon
Analytical Biotechnology Department, MedImmune Inc, Gaithersburg, MD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ziping Wei
Analytical Biotechnology Department, MedImmune Inc, Gaithersburg, MD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael Washabaugh
Analytical Biotechnology Department, MedImmune Inc, Gaithersburg, MD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: michael.washabaugh@theraproteins.com Patriciacash8@gmail.com
Patricia Cash
Analytical Biotechnology Department, MedImmune Inc, Gaithersburg, MD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: michael.washabaugh@theraproteins.com Patriciacash8@gmail.com
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

Reference

  1. 1.↵
    1. Geiger T.,
    2. Clarke S.
    Deamidation, Isomerization, and Racemization at Asparaginyl and Aspartyl Residues in Peptides. Succinimide-linked Reactions That Contribute to Protein Degradation. J. Biol. Chem. 1987, 262 (2), 785–794.
    OpenUrlAbstract/FREE Full Text
  2. 2.↵
    1. Manning M. C.,
    2. Patel K.,
    3. Borchardt R. T.
    Stability of Protein Pharmaceuticals. Pharm. Res. 1989, 6 (11), 903–918.
    OpenUrlCrossRefPubMedWeb of Science
  3. 3.↵
    1. Cacia J.,
    2. Keck R.,
    3. Presta L. G.,
    4. Frenz J.
    Isomerization of an Aspartic Acid Residue in the Complementarity-determining Regions of a Recombinant Antibody to Human IgE: Identification and Effect on Binding Affinity. Biochemistry 1996, 35 (6), 1897–1903.
    OpenUrlCrossRefPubMedWeb of Science
  4. 4.↵
    1. Wakankar A. A.,
    2. Borchardt R. T.,
    3. Eigenbrot C.,
    4. Shia S.,
    5. Wang Y. J.,
    6. Shire S. J.,
    7. Liu J. L.
    Aspartate Isomerization in the Complementarity-determining Regions of Two Closely Related Monoclonal Antibodies. Biochemistry 2007, 46 (6), 1534–1544.
    OpenUrlCrossRefPubMedWeb of Science
  5. 5.↵
    1. Cloos P. A.,
    2. Fledelius C.
    Collagen Fragments in Urine Derived from Bone Resorption Are Highly Racemized and Isomerized: a Biological Clock of Protein Aging with Clinical Potential. Biochem. J. 2000, 345 (3), 473–480.
    OpenUrlAbstract/FREE Full Text
  6. 6.↵
    1. Clarke S.
    Propensity for Spontaneous Succinimide Formation from Aspartyl and Asparaginyl Residues in Cellular Proteins. Int. J. Pept. Protein Res. 1987, 30 (6), 808–821.
    OpenUrlPubMedWeb of Science
  7. 7.↵
    1. Oliyai C.,
    2. Borchardt R. T.
    Chemical Pathways of Peptide Degradation. VI. Effect of the Primary Sequence on the Pathways of Degradation of Aspartyl Residues in Model Hexapeptides. Pharm. Res. 1994, 11 (5), 751–758.
    OpenUrlCrossRefPubMedWeb of Science
  8. 8.↵
    1. Chu G. C.,
    2. Chelius D.,
    3. Xiao G.,
    4. Khor H. K.,
    5. Coulibaly S.,
    6. Bondarenko P. V.
    Accumulation of Succinimide in a Recombinant Monoclonal Antibody in Mildly Acidic Buffers under Elevated Temperatures. Pharm. Res. 2007, 24 (6), 1145–1156.
    OpenUrlPubMed
  9. 9.↵
    1. Xiao G.,
    2. Bondarenko P. V.
    Identification and Quantification of Degradations in the Asp-Asp Motifs of a Recombinant Monoclonal Antibody. J. Pharm. Biomed. Anal. 2008, 47 (1), 23–30.
    OpenUrlPubMed
  10. 10.↵
    1. Zhang J.,
    2. Yip H.,
    3. Katta V.
    Identification of Isomerization and Racemization of Aspartate in the Asp-Asp Motifs of a Therapeutic Protein. Anal. Biochem. 2011, 410 (2), 234–243.
    OpenUrlPubMed
  11. 11.↵
    1. Yi L.,
    2. Beckley N.,
    3. Gikanga B.,
    4. Zhang J.,
    5. Wang Y. J.,
    6. Chih H. W.,
    7. Sharma V. K.
    Isomerization of Asp-Asp Motif in Model Peptides and a Monoclonal Antibody Fab Fragment. J. Pharm. Sci. 2013, 102 (3), 947–959.
    OpenUrlCrossRefPubMed
  12. 12.↵
    1. Mire-Sluis A. R
    State of the Art Analytical Methods for the Characterization of Biological Products and Assessment of Comparability, Mire-Sluis A. R, Ed.; Karger: Basel, Switzerland, 2005; pp 117–127.
  13. 13.↵
    1. Rehder D. S.,
    2. Chelius D.,
    3. McAuley A.,
    4. Dillon T. M.,
    5. Xiao G.,
    6. Crouse-Zeineddini J.,
    7. Vardanyan L.,
    8. Perico N.,
    9. Mukku V.,
    10. Brems D. N.,
    11. Matsumura M.,
    12. Bondarenko P. V.
    Isomerization of a Single Aspartyl Residue of Anti-epidermal Growth Factor Receptor Immunoglobulin Gamma2 Antibody Highlights the Role Avidity Plays in Antibody Activity. Biochemistry 2008, 47 (8), 2518–2530.
    OpenUrl
  14. 14.↵
    1. Doyle H. A.,
    2. Gee R. J.,
    3. Mamula M. J.
    Altered Immunogenicity of Isoaspartate Containing Proteins. Autoimmunity 2007, 40 (2), 131–137.
    OpenUrlCrossRefPubMedWeb of Science
  15. 15.↵
    1. Cournoyer J. J.,
    2. Pittman J. L.,
    3. Ivleva V. B.,
    4. Fallows E.,
    5. Waskell L.,
    6. Costello C. E.,
    7. o'Conner P. B.
    Deamidation: Differentiation of Aspartyl from Isoaspartyl Products in Peptides by Electron Capture Dissociation. Protein Sci. 2005, 14 (2), 452–463.
    OpenUrlCrossRefPubMed
  16. 16.↵
    1. O'Connor P. B.,
    2. Cournoyer J. J.,
    3. Pitteri S. J.,
    4. Chrisman P. A.,
    5. McLuckey S. A.
    Differentiation of Aspartic and Isoaspartic Acids Using Electron Transfer Dissociation. J. Am. Soc. Mass. Spectr. 2006, 17 (1),15–19.
    OpenUrlCrossRefPubMedWeb of Science
  17. 17.↵
    1. Johnson B. A.,
    2. Aswad D. W.
    Optimal Conditions for the Use of Protein L–Isoaspartyl Methyltransferase in Assessing the Isoaspartate Content of Peptides and Proteins. Anal. Biochem. 1991, 192 (2), 384–391.
    OpenUrlCrossRefPubMed
  18. 18.↵
    1. Carlson A. D.,
    2. Riggin R. M.
    Development of Improved High-performance Liquid Chromatography Conditions for Nonisotopic Detection of Isoaspartic Acid To Determine the Extent of Protein Deamidation. Anal. Biochem. 2000, 278 (2), 150–155.
    OpenUrlCrossRefPubMed
  19. 19.↵
    1. Zhang W.,
    2. Czupryn J. M.,
    3. Boyle P. T. Jr..,
    4. Amari J.
    Characterization of Asparagine Deamidation and Aspartate Isomerization in Recombinant Human Interleukin-11. Pharm. Res. 2002, 19 (8), 1223–1231.
    OpenUrlPubMed
  20. 20.↵
    1. Zhang W.,
    2. Czupryn M. J.
    Development of a Strong Cation-exchange High-performance Liquid Chromatography Method for Analysis of Isoaspartate in Proteins. Anal. Biochem. 2002, 307 (1), 184–186.
    OpenUrlPubMed
  21. 21.↵
    1. Diepold K.,
    2. Bomans K.,
    3. Wiedmann M.,
    4. Zimmermann B.,
    5. Petzold A.,
    6. Schlothauer T.,
    7. Mueller R.,
    8. Moritz B.,
    9. Stracke J. O.,
    10. Mølhøj M.,
    11. Reusch D.,
    12. Bulau P.
    Simultaneous Assessment of Asp Isomerization and Asn Deamidation in Recombinant Antibodies by LC-MS Following Incubation at Elevated Temperatures. PLoS One 2012, 7 (1), e30295.
    OpenUrlPubMed
  22. 22.↵
    1. Eakin C. M.,
    2. Miller A.,
    3. Kerr J.,
    4. Kung J.,
    5. Wallace A.
    Assessing Analytical Methods To Monitor IsoAsp Formation in Monoclonal Antibodies. Front. Pharmacol. 2014, 5, 87.
    OpenUrl
  23. 23.↵
    Guidance for Industry. Q7A. Good Manufacturing Practice Guidance for Active Pharmaceutical Ingredients. Available from http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm065005.htm.
  24. 24.↵
    1. Wyndham K. D.,
    2. O'Gara J. E.,
    3. Walter T. H.,
    4. Glose K. H.,
    5. Lawrence N. L.,
    6. Alden B. A.,
    7. Izzo G. S.,
    8. Hudalla C. J.,
    9. Iraneta P. C.
    Characterization and Evaluation of C18 HPLC Stationary Phases Based on Ethyl-bridged Hybrid Organic/Inorganic Particles. Anal. Chem. 2003, 75 (24), 6781–6788.
    OpenUrlCrossRefPubMed
  25. 25.↵
    1. Peng L.,
    2. Oganesyan V.,
    3. Wu H.,
    4. Dall'Acqua W. F.,
    5. Damschroder M. M.
    Molecular Basis for Antagonistic Activity of Anifrolumab, an Anti-interferon–Alpha Receptor 1 Antibody. MAbs 2015, 7 (2), 428–439.
    OpenUrlCrossRefPubMed
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 70 (6)
PDA Journal of Pharmaceutical Science and Technology
Vol. 70, Issue 6
November/December 2016
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Qualification of a Quantitative Method for Monitoring Aspartate Isomerization of a Monoclonal Antibody by Focused Peptide Mapping
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
3 + 3 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Qualification of a Quantitative Method for Monitoring Aspartate Isomerization of a Monoclonal Antibody by Focused Peptide Mapping
Mingyan Cao, Wenjun (David) Mo, Anthony Shannon, Ziping Wei, Michael Washabaugh, Patricia Cash
PDA Journal of Pharmaceutical Science and Technology Nov 2016, 70 (6) 490-507; DOI: 10.5731/pdajpst.2015.006239

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Qualification of a Quantitative Method for Monitoring Aspartate Isomerization of a Monoclonal Antibody by Focused Peptide Mapping
Mingyan Cao, Wenjun (David) Mo, Anthony Shannon, Ziping Wei, Michael Washabaugh, Patricia Cash
PDA Journal of Pharmaceutical Science and Technology Nov 2016, 70 (6) 490-507; DOI: 10.5731/pdajpst.2015.006239
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results and Discussion
    • Conclusions
    • Conflict of Interest Declaration
    • SUPPORTING INFORMATION AVAILABLE
    • Acknowledgements
    • Reference
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Analysis of Virus Clearance for Biotechnology Manufacturing Processes from Early to Late Phase Development
  • Coring and Fragmentation of Elastomeric Needle Shield in a Pre-Filled Syringe
  • Worldwide Regulatory Reliance: Results of an Executed Chemistry, Manufacturing, and Control Post-Approval Change Pilot
Show more Research

Similar Articles

Keywords

  • Monoclonal antibody (mAb)
  • Complementarity-determining regions (CDRs)
  • Aspartic acid Isomerization
  • Focused peptide mapping
  • Method qualification

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire