Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Article CommentaryCommentary

Biocompute Objects—A Step towards Evaluation and Validation of Biomedical Scientific Computations

Vahan Simonyan, Jeremy Goecks and Raja Mazumder
PDA Journal of Pharmaceutical Science and Technology March 2017, 71 (2) 136-146; DOI: https://doi.org/10.5731/pdajpst.2016.006734
Vahan Simonyan
1Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: vahan.simonyan@fda.hhs.gov jgoecks@gwu.edu mazumder@gwu.edu
Jeremy Goecks
2Computational Biology Institute, George Washington University, Ashburn, VA, USA; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: vahan.simonyan@fda.hhs.gov jgoecks@gwu.edu mazumder@gwu.edu
Raja Mazumder
3Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: vahan.simonyan@fda.hhs.gov jgoecks@gwu.edu mazumder@gwu.edu
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Goecks J.,
    2. Coraor N.,
    3. Nekrutenko A.,
    4. Taylor J.
    NGS Analyses by Visualization with Trackster. Nat. Biotechnol. 2012, 30 (11), 1036–1039.
    OpenUrlCrossRefPubMed
  2. 2.↵
    1. Alioto T. S.,
    2. Derdak S.,
    3. Beck T. A.,
    4. Boutros P. C.,
    5. Bower L.,
    6. et al
    . A Comprehensive Assessment of Somatic Mutation Calling in Cancer Genomes. bioRxiv 2014, 012997.
  3. 3.↵
    1. Wilson C. A.,
    2. Simonyan V.
    FDA's Activities Supporting Regulatory Application of “Next Gen” Sequencing Technologies. PDA J. Pharm. Sci. Technol. 2014, 68 (6), 626–630.
    OpenUrlAbstract/FREE Full Text
  4. 4.↵
    1. Simonyan V.,
    2. Mazumder R.
    High-Performance Integrated Virtual Environment (HIVE) Tools and Applications for Big Data Analysis. Genes (Basel) 2014, 5 (4), 957–981.
    OpenUrl
  5. 5.↵
    1. Goble C. A.,
    2. Bhagat J.,
    3. Aleksejevs S.,
    4. Cruickshank D.,
    5. Michaelides D.,
    6. et al
    . myExperiment: A Repository and Social Network for the Sharing of Bioinformatics Workflows. Nucleic Acids Res. 2010, 38 (Suppl 2), W677–W682.
    OpenUrlCrossRefPubMedWeb of Science
  6. 6.↵
    1. Roure D.
    Towards Computational Research Objects. DPRMA '13 Proceedings of the 1st International Workshop on Digital Preservation of Research Methods and Artefacts. ACM: New York, NY, 2013; pp 16–19.
  7. 7.↵
    1. Hettne K. M.,
    2. Dharuri H.,
    3. Zhao J.,
    4. Wolstencroft K.,
    5. Belhajjame K.,
    6. et al
    . Structuring Research Methods and Data with the Research Object Model: Genomics Workflows as a Case Study. J. Biomed. Semantics 2014, 5 (1), 41.
    OpenUrlCrossRefPubMed
  8. 8.↵
    1. Wolstencroft K.,
    2. Haines R.,
    3. Fellows D.,
    4. Williams A.,
    5. Withers D.,
    6. et al
    . The Taverna Workflow Suite: Designing and Executing Workflows of Web Services on the Desktop, Web or in the Cloud. Nucleic Acids Res. 2013, 41, W557–W561.
    OpenUrlCrossRefPubMedWeb of Science
  9. 9.↵
    1. Tiwari A.,
    2. Sekhar A. K.
    Workflow Based Framework for Life Science Informatics. Comput. Biol. Chem. 2007, 31 (5), 305–319.
    OpenUrlCrossRefPubMedWeb of Science
  10. 10.↵
    1. Destro Bisol G.,
    2. Anagnostou P.,
    3. Capocasa M.,
    4. Bencivelli S.,
    5. Cerroni A.,
    6. et al
    . Perspectives on Open Science and Scientific Data Sharing: An Interdisciplinary Workshop. J. Anthropol. Sci. 2014, 92, 179–200.
    OpenUrl
  11. 11.↵
    1. Gaudet P.,
    2. Bairoch A.,
    3. Field D.,
    4. Sansone S. A.,
    5. Taylor C.,
    6. et al
    . Towards BioDBcore: A Community-defined Information Specification for Biological Databases. Database (Oxford) 2011, baq027.
  12. 12.↵
    1. Altschul S. F.,
    2. Gish W.,
    3. Miller W.,
    4. Myers E. W.,
    5. Lipman D. J.
    Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215 (3), 403–410.
    OpenUrlCrossRefPubMedWeb of Science
  13. 13.↵
    1. Afgan E.,
    2. Baker D.,
    3. van den Beek M.,
    4. Blankenberg D.,
    5. Bouvier D.,
    6. et al
    . The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res. 2016, 44, W3–W10.
    OpenUrlCrossRefPubMed
  14. 14.↵
    1. Lynch V. J.,
    2. Bedoya-Reina O. C.,
    3. Ratan A.,
    4. Sulak M.,
    5. Drautz-Moses D. I.,
    6. et al
    . Elephantid Genomes Reveal the Molecular Bases of Woolly Mammoth Adaptations to the Arctic. Cell Rep. 2015, 12 (2), 217–228.
    OpenUrlCrossRefPubMed
  15. 15.↵
    1. Heydarian M.,
    2. Luperchio T. R.,
    3. Cutler J.,
    4. Mitchell C. J.,
    5. Kim M. S.,
    6. et al
    . Prediction of Gene Activity in Early B Cell Development Based on an Integrative Multi-Omics Analysis. J. Proteomics Bioinform. 2014, 7, 50–63.
    OpenUrlCrossRef
  16. 16.↵
    1. Pond S. K.,
    2. Wadhawan S.,
    3. Chiaromonte F.,
    4. Ananda G.,
    5. Chung W. Y.,
    6. et al
    . Windshield Splatter Analysis with the Galaxy Metagenomic Pipeline. Genome Res. 2009, 19 (11), 2144–2153.
    OpenUrlAbstract/FREE Full Text
  17. 17.↵
    1. Miller W.,
    2. Schuster S. C.,
    3. Welch A. J.,
    4. Ratan A.,
    5. Bedoya-Reina O. C.,
    6. et al
    . Polar and Brown Bear Genomes Reveal Ancient Admixture and Demographic Footprints of Past Climate Change. Proc. Natl Acad. Sci. U S A 2012, 109 (36), E2382–E2390.
    OpenUrlAbstract/FREE Full Text
  18. 18.↵
    1. Zook J. M.,
    2. Catoe D.,
    3. McDaniel J.,
    4. Vang L.,
    5. Spies N.,
    6. et al
    . Extensive Sequencing of Seven Human Genomes To Characterize Benchmark Reference Materials. Sci. Data 2016, 3, 160025.
    OpenUrlCrossRefPubMed
  19. 19.
    1. Benson D. A.,
    2. Karsch-Mizrachi I.,
    3. Lipman D. J.,
    4. Ostell J.,
    5. Wheeler D. L.
    ; GenBank. Nucleic Acids Res. 2007, 35, D21–D25.
    OpenUrlCrossRefPubMedWeb of Science
  20. 20.↵
    1. Goecks J.,
    2. Nekrutenko A.,
    3. Taylor J.
    Galaxy: A Comprehensive Approach for Supporting Accessible, Reproducible, and Transparent Computational Research in the Life Sciences. Genome Biol. 2010, 11, (8), R86.
    OpenUrlCrossRefPubMed
  21. 21.↵
    1. Terry S. F.
    The Global Alliance for Genomics & Health. Genet. Test. Mol. Biomarkers 2014, 18 (6), 375–376.
    OpenUrl
  22. 22.↵
    1. Brownstein C. A.,
    2. Beggs A. H.,
    3. Homer N.,
    4. Merriman B.,
    5. Yu T. W.,
    6. et al
    . An International Effort towards Developing Standards for Best Practices in Analysis, Interpretation and Reporting of Clinical Genome Sequencing Results in the CLARITY Challenge. Genome Biol. 2014, 15 (1), R53.
    OpenUrlCrossRefPubMed
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 71 (2)
PDA Journal of Pharmaceutical Science and Technology
Vol. 71, Issue 2
March/April 2017
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Biocompute Objects—A Step towards Evaluation and Validation of Biomedical Scientific Computations
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
8 + 9 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Biocompute Objects—A Step towards Evaluation and Validation of Biomedical Scientific Computations
Vahan Simonyan, Jeremy Goecks, Raja Mazumder
PDA Journal of Pharmaceutical Science and Technology Mar 2017, 71 (2) 136-146; DOI: 10.5731/pdajpst.2016.006734

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Biocompute Objects—A Step towards Evaluation and Validation of Biomedical Scientific Computations
Vahan Simonyan, Jeremy Goecks, Raja Mazumder
PDA Journal of Pharmaceutical Science and Technology Mar 2017, 71 (2) 136-146; DOI: 10.5731/pdajpst.2016.006734
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Background
    • Experimental Method
    • Experimental Protocol
    • Experimental Instance
    • Biocompute Object (Experimental Instance)
    • Biocompute Template (Experimental Protocol) and Template Library
    • Validation Schema
    • Biocompute Database
    • Utility and Evolving Perspective
    • Disclaimer
    • Competing Interests
    • Authors' Contributions
    • Acknowledgements
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Playbook Workflow Builder: Interactive Construction of Bioinformatics Workflows from a Network of Microservices
  • BioCompute Objects to communicate a viral detection pipeline with potential for use in a regulatory environment
  • Differential expression of glycosyltransferases identified through comprehensive pan-cancer analysis
  • Enhancing the interoperability of glycan data flow between ChEBI, PubChem, and GlyGen
  • A Quantitative Evaluation of COVID-19 Epidemiological Models
  • Strengthening the BioCompute Standard by Crowdsourcing on PrecisionFDA
  • Enabling Precision Medicine via standard communication of HTS provenance, analysis, and results
  • Google Scholar

More in this TOC Section

  • Retrospective Evaluation of Cycled Resin in Viral Clearance Studies—A Multiple Company Collaboration—Post ICH Q5A(R2) Review
  • A Risk Based Approach for Pre-Use/Post-Sterilization Integrity Test Simulation During Bacterial Retention Testing as Part of the Process Specific Filter Validation of Sterilizing Grade Filters
  • Challenges and Solutions to Manufacturing of Low-Viscosity, Ultra-High Concentration IgG1 Drug Products: From Late Downstream Process to Final Fill Finish Processing
Show more Commentary

Similar Articles

Keywords

  • Biocompute object
  • NGS standardization
  • Computation reproducibility
  • Regulatory research
  • FDA

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire