Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleResearch

Retention of Acholeplasma laidlawii by Sterile Filtration Membranes: Effect of Cultivation Medium and Filtration Temperature

Alexander Helling, Hannes König, Felix Seiler, Ralph Berkholz, Volkmar Thom and Milan Polakovic
PDA Journal of Pharmaceutical Science and Technology May 2018, 72 (3) 264-277; DOI: https://doi.org/10.5731/pdajpst.2017.008102
Alexander Helling
1Sartorius Stedim Biotech GmbH, Göttingen, Germany;
2Department of Chemical and Biochemical Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: alexander.helling@sartorius-stedim.com
Hannes König
3Department of Medical Engineering and Biotechnology, University of Applied Science Jena, Jena, Germany; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Felix Seiler
4Faculty of Natural Sciences, University of Applied Sciences Esslingen, Esslingen, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ralph Berkholz
3Department of Medical Engineering and Biotechnology, University of Applied Science Jena, Jena, Germany; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Volkmar Thom
1Sartorius Stedim Biotech GmbH, Göttingen, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Milan Polakovic
2Department of Chemical and Biochemical Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

Reference

  1. 1.↵
    1. Sundaram S.,
    2. Auriemma M.,
    3. Howard G.
    Application of Membrane Filtration for Removal of Diminutive Bioburden Organisms in Pharmaceutical Products and Processes. PDA J. Pharm. Sci. Technol. 1999, 53 (4), 186–201.
    OpenUrlAbstract/FREE Full Text
  2. 2.↵
    1. Watson S. P.,
    2. Clements M. O.,
    3. Foster S. J.
    Characterization of the Starvation-Survival Response of Staphylococcus aureus. J. Bacteriol. 1998, 180 (7), 1750–1758.
    OpenUrl
  3. 3.↵
    1. Kjelleberg S.,
    2. Hermansson M.
    Starvation-Induced Effects on Bacterial Surface Characteristics. Appl. Environ. Microbiol. 1984, 48 (3), 497–503.
    OpenUrlAbstract/FREE Full Text
  4. 4.↵
    ASTM International. Standard Test Method for Determining Bacterial Retention of Membrane Filters Utilized for Liquid Filtration. ASTM Standard F838–15a, 2015.
  5. 5.↵
    1. Folmsbee M.,
    2. Moussourakis M.
    Retention of Highly Penetrative A. laidlawii Mycoplasma Cells. Bioprocess Int. 2012, 10 (5), 60–62.
    OpenUrl
  6. 6.↵
    1. Helling A.,
    2. Kubicka A.,
    3. Schaap I. A. T.,
    4. Polakovic M.,
    5. Hansmann B.,
    6. Thiess H.,
    7. Strube J.,
    8. Volkmar T.
    Passage of Soft Pathogens through Microfiltration Membranes Scales with Transmembrane Pressure. J. Membr. Sci. 2017, 522, 292–302.
    OpenUrl
  7. 7.↵
    1. Folmsbee M.,
    2. Noah C.,
    3. McAlister M.
    Nutritional Effects on the Growth, Cell Size, and Resistance to Stress of Acholeplasma laidlawii. PDA J. Pharm. Sci. Technol. 2010, 64 (6), 581–592.
    OpenUrl
  8. 8.↵
    1. Anderson D. L.,
    2. Pollock M. E.,
    3. Brower L. F.
    Morphology of Mycoplasma laidlawii type A. II. Effect of Glucose on Growth and Cellular Morphology. J. Bacteriol. 1965, 90 (6), 1768–1777.
    OpenUrlAbstract/FREE Full Text
  9. 9.↵
    1. Razin S.,
    2. Tully J. G.
    Cholesterol Requirement of Mycoplasmas. J. Bacteriol. 1970, 102 (2), 306–310.
    OpenUrlAbstract/FREE Full Text
  10. 10.↵
    1. Razin S.
    Cholesterol Incorporation into Bacterial Membranes. J. Bacteriol. 1975, 124 (1), 570–572.
    OpenUrlAbstract/FREE Full Text
  11. 11.↵
    1. Romano N.,
    2. Shirvan M. H.,
    3. Rottem S.
    Changes in Membrane Lipid Composition of Mycoplasma capricolum Affect the Cell Volume. J. Bacteriol. 1986, 167 (3), 1089–1091.
    OpenUrlAbstract/FREE Full Text
  12. 12.↵
    1. McIntosh T. J.
    The Effect of Cholesterol on the Structure of Phosphatidylcholine Bilayers. Biochim. Biophys. Acta 1978, 513 (1), 43–58.
    OpenUrlPubMed
  13. 13.↵
    1. Ipsen J. H.,
    2. Mouritsen O. G.,
    3. Bloom M.
    Relationships between Lipid Membrane Area, Hydrophobic Thickness, and Acyl-Chain Orientational Order. The Effects of Cholesterol. Biophys. J. 1990, 57 (3), 405–412.
    OpenUrlCrossRefPubMedWeb of Science
  14. 14.↵
    1. Roberts M. C.
    Total Serum Cholesterol Levels in the Horse. Br. Vet. J. 1974, 130 (1), 16–18.
    OpenUrl
  15. 15.↵
    1. Folmsbee M.,
    2. Howard G.,
    3. McAlister M.
    Nutritional Effects of Culture Media on Mycoplasma Cell Size and Removal by Filtration. Biologicals 2010, 38 (2), 214–217.
    OpenUrlPubMed
  16. 16.↵
    1. Folmsbee M.,
    2. Lentine K. R.,
    3. Wright C.,
    4. Haake G.,
    5. Mcburnie L.,
    6. Ashtekar D.,
    7. Beck B.,
    8. Hutchison N.,
    9. Okhio-Seaman L.,
    10. Potts B.,
    11. Pawar V.,
    12. Windsor H.
    The Development of a Microbial Challenge Test with Acholeplasma laidlawii To Rate Mycoplasma-Retentive Filters by Filter Manufacturers. PDA J. Pharm. Sci. Technol. 2014, 68 (3), 281–296.
    OpenUrlAbstract/FREE Full Text
  17. 17.↵
    PDA Technical Report No. 75. Consensus Method for Rating 0.1 μm Mycoplasma Reduction Filters; Parenteral Drug Association: Bethesda, MD, 2016.
  18. 18.↵
    1. Cameron D. G.,
    2. Martin A.,
    3. Moffatt D. J.,
    4. Mantsch H. H.
    Infrared Spectroscopic Study of the Gel to Liquid-Crystal Phase Transition in Live Acholeplasma laidlawii Cells. Biochemistry 1985, 24 (16), 4355–4359.
    OpenUrl
  19. 19.↵
    1. Silvius J.,
    2. Mak N.,
    3. McElhaney R.
    Lipid and Protein Composition and Thermotropic Lipid Phase Transitions in Fatty Acid–Homogeneous Membranes of Acholeplasma laidlawii B. Biochim. Biophys. Acta 1980, 597, 199–215.
    OpenUrlPubMed
  20. 20.↵
    1. de Meyer F.,
    2. Smit B.
    Effect of Cholesterol on the Structure of a Phospholipid Bilayer. Proc. Natl. Acad. Sci. U. S. A. 2009, 106 (10) 3654–3658.
    OpenUrlAbstract/FREE Full Text
  21. 21.↵
    1. Brendzel A.,
    2. Miller I.
    Liposome Filtration. Dependence on Transition Temperature. Biochim. Biophys. Acta 1980, 596, 129–136.
    OpenUrlPubMed
  22. 22.↵
    1. Mittelman M.,
    2. Jornitz M.,
    3. Meltzer T.
    Bacterial Cell Size and Surface Charge Characteristics Relevant to Filter Validation Studies. PDA J. Pharm. Sci. Technol. 1998, 52 (1), 37–42.
    OpenUrlAbstract/FREE Full Text
  23. 23.↵
    1. Liu P. Y.,
    2. Chin L. K.,
    3. Ser W.,
    4. Ayi T. C.,
    5. Yap P. H.,
    6. Bourouina T.,
    7. Leprince-Wang Y.
    Real-Time Measurement of Single Bacterium's Sefractive Index Using Optofluidic Immersion Refractometry. Procedia Eng. 2014, 87, 356–359.
    OpenUrl
  24. 24.↵
    1. Daneo-Moore L.,
    2. Dicker D.,
    3. Higgins M. L.
    Structure of the Nucleoid in Cells of Streptococcus faecalis. J. Bacteriol. 1980, 141 (2), 928–937.
    OpenUrl
  25. 25.↵
    1. Valkenburg J. A. C.,
    2. Woldringh C. L.
    Phase Separation between Nucleoid and Cytoplasm in Escherichia coli as Defined by Immersive Refractometry. J. Bacteriol. 1984, 160 (3), 1151–1157.
    OpenUrlAbstract/FREE Full Text
  26. 26.↵
    1. Balaev A. E.,
    2. Dvoretski K. N.,
    3. Doubrovski V. A.
    Determination of Refractive Index of Rod-Shaped Bacteria from Spectral Extinction Measurements. In Saratov Fall Meeting 2002: Optical Technologies in Biophysics and Medicine IV; 2003; vol 5068, pp 375–380.
    OpenUrl
  27. 27.↵
    1. Ross K. F.
    A. The Size of Living Bacteria. Q. J. Microsc. Sci. 1957, 98 (4), 435–454.
    OpenUrl
  28. 28.↵
    1. Silverstein M. S.,
    2. Cameron N. R.,
    3. Hillmyer M. A.
    1. Ulbricht M.
    Separation Membranes. In Porous Polymers, Silverstein M. S., Cameron N. R., Hillmyer M. A., Eds; John Wiley & Sons, Inc.: Hoboken, NJ, 2011; pp 275–321.
  29. 29.↵
    1. Han P.,
    2. Shen X.,
    3. Yang H.,
    4. Kim H.,
    5. Tong M.
    Influence of Nutrient Conditions on the Transport of Bacteria in Saturated Porous Media. Colloids Surf. B: Biointerfaces 2013, 102, 752–758.
    OpenUrlPubMed
  30. 30.↵
    1. Anderson W.,
    2. Kozak D.,
    3. Coleman V. A.,
    4. Jämting Å. K.,
    5. Trau M.
    A Comparative Study of Submicron Particle Sizing Platforms: Accuracy, Precision and Resolution Analysis of Polydisperse Particle Size Distributions. J. Colloid Interface Sci. 2013, 405, 322–330.
    OpenUrlCrossRefWeb of Science
  31. 31.↵
    1. Ross K. F. A.,
    2. Deutsch K.
    The Shrinkage of Air-Dried Bacteria Prepared for the Electron-Microscope. Q. J. Microsc. Sci. 1957, 98 (3), 281–290.
    OpenUrl
  32. 32.↵
    1. Montesinos E.,
    2. Esteve I.
    Guerrero, R. Comparison between Direct Methods for Determination of Microbial Cell Volume: Electron Microscopy and Electron Particle Sizing. Appl. Environ. Microbiol. 1983, 45 (5), 1651–1658.
    OpenUrlAbstract/FREE Full Text
  33. 33.↵
    1. Schädler S.,
    2. Burkhardt C.,
    3. Kappler A.
    Evaluation of Electron Microscopic Sample Preparation Methods and Imaging Techniques for Characterization of Cell-Mineral Aggregates. Geomicrobiol. J. 2008, 25 (5), 228–239.
    OpenUrlCrossRefWeb of Science
  34. 34.↵
    1. Lebleu N.,
    2. Roques C.,
    3. Aimar P.,
    4. Causserand C.
    Role of the Cell-Wall Structure in the Retention of Bacteria by Microfiltration Membranes. J. Membr. Sci. 2009, 326 (1), 178–185.
    OpenUrl
  35. 35.↵
    1. Kim H. N.,
    2. Walker S. L.
    Escherichia coli Transport in Porous Media: Influence of Cell Strain, Solution Chemistry, and Temperature. Colloids Surfaces B: Biointerfaces 2009, 71 (1), 160–167.
    OpenUrlCrossRefPubMed
  36. 36.↵
    1. Li X.,
    2. Xue X.,
    3. Pashley R. M.
    A Study of the Surface Charging Properties of a Standard Strain of Escherichia coli (ATCC 11775) in Aqueous Solutions. Colloids Surfaces B: Biointerfaces 2015, 135, 811–816.
    OpenUrl
  37. 37.↵
    1. Zhao W.,
    2. Walker S. L.,
    3. Huang Q.,
    4. Cai P.
    Adhesion of Bacterial Pathogens to Soil Colloidal Particles: Influences of Cell Type, Natural Organic Matter, and Solution Chemistry. Water Res. 2014, 53, 35–46.
    OpenUrl
  38. 38.↵
    1. Al Malek S. A.,
    2. Abu Seman M. N.,
    3. Johnson D.,
    4. Hilal N.
    Formation and Characterization of Polyethersulfone Membranes Using Different Concentrations of Polyvinylpyrrolidone. Desalination 2012, 288, 31–39.
    OpenUrl
  39. 39.↵
    1. Ladner D. A.,
    2. Steele M.,
    3. Weir A.,
    4. Hristovski K.,
    5. Westerhoff P.
    Functionalized Nanoparticle Interactions with Polymeric Membranes. J. Hazard. Mater. 2012, 211–212, 288–295.
    OpenUrl
  40. 40.↵
    1. McElhaney R.,
    2. De Gier J.,
    3. Van der Neut-Kok E. C. M.
    The Effect of Alterations in Fatty Acid Composition and Cholesterol Content on the Nonelectrolyte Permeability of Acholeplasma laidlawii B Cells and Derived Liposomes. Biochim. Biophys. Acta 1973, 298 (2), 500–512.
    OpenUrlPubMedWeb of Science
  41. 41.↵
    1. Razin S.
    Variations in Mycoplasma Morphology Induced by Long-Chain Fatty Acids. J. Gen. Microbiol. 1966, 42 (1), 139–145.
    OpenUrlCrossRefPubMed
  42. 42.↵
    1. Garcia-Manyes S.,
    2. Oncins G.,
    3. Sanz F.
    Effect of Temperature on the Nanomechanics of Lipid Bilayers Studied by Force Spectroscopy. Biophys. J. 2005, 89 (3), 4261–4274.
    OpenUrlCrossRefPubMed
  43. 43.↵
    1. Picas L.,
    2. Rico F.,
    3. Scheuring S.
    Direct Measurement of the Mechanical Properties of Lipid Phases in Supported Bilayers. Biophys. J. 2012, 102 (1) L01–L03.
    OpenUrlCrossRefPubMed
  44. 44.↵
    1. Ashkar R.,
    2. Nagao M.,
    3. Butler P. D.,
    4. Woodka A. C.,
    5. Sen M. K.,
    6. Koga T.
    Tuning Membrane Thickness Fluctuations in Model Lipid Bilayers. Biophys. J. 2015, 109 (1), 106–112.
    OpenUrl
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 72 (3)
PDA Journal of Pharmaceutical Science and Technology
Vol. 72, Issue 3
May/June 2018
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Retention of Acholeplasma laidlawii by Sterile Filtration Membranes: Effect of Cultivation Medium and Filtration Temperature
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
8 + 5 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Retention of Acholeplasma laidlawii by Sterile Filtration Membranes: Effect of Cultivation Medium and Filtration Temperature
Alexander Helling, Hannes König, Felix Seiler, Ralph Berkholz, Volkmar Thom, Milan Polakovic
PDA Journal of Pharmaceutical Science and Technology May 2018, 72 (3) 264-277; DOI: 10.5731/pdajpst.2017.008102

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Retention of Acholeplasma laidlawii by Sterile Filtration Membranes: Effect of Cultivation Medium and Filtration Temperature
Alexander Helling, Hannes König, Felix Seiler, Ralph Berkholz, Volkmar Thom, Milan Polakovic
PDA Journal of Pharmaceutical Science and Technology May 2018, 72 (3) 264-277; DOI: 10.5731/pdajpst.2017.008102
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • 1. Introduction
    • 2. Materials and Methods
    • 3. Results and Discussion
    • 4. Conclusions
    • Conflict of Interest Declaration
    • Reference
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Coring and Fragmentation of Elastomeric Needle Shield in a Pre-Filled Syringe
  • Worldwide Regulatory Reliance: Results of an Executed Chemistry, Manufacturing, and Control Post-Approval Change Pilot
  • Preservative Efficacy Testing of Refrigerated Pharmaceuticals: Choice of Challenging Isolate and Storage Temperature
Show more Research

Similar Articles

Keywords

  • Bacteria
  • Mycoplasma
  • Microfiltration
  • Retention
  • Phages
  • Transmembrane pressure
  • Filtration temperature
  • Deformation
  • Stiffness
  • Softness

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire