Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleResearch

Local Concentrating, Not Shear Stress, That May Lead to Possible Instability of Protein Molecules During Syringe Injection: A Fluid Dynamic Study with Two-Phase Flow Model

Lei Xing, Yue Li and Tonglei Li
PDA Journal of Pharmaceutical Science and Technology May 2019, 73 (3) 260-275; DOI: https://doi.org/10.5731/pdajpst.2018.009357
Lei Xing
Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yue Li
Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tonglei Li
Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: tonglei@purdue.edu
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Shire S. J.,
    2. Shahrokh Z.,
    3. Liu J.
    Challenges in the Development of High Protein Concentration Formulations. J. Pharm. Sci. 2004, 93 (6), 1390–1402.
    OpenUrlCrossRefPubMedWeb of Science
  2. 2.↵
    1. Frokjaer S.,
    2. Otzen D.
    Protein Drug Stability: A Formulation Challenge. Nat. Rev. Drug Discov. 2005, 4 (4), 298–306.
    OpenUrlCrossRefPubMedWeb of Science
  3. 3.↵
    1. Overcashier D. E.,
    2. Chan E. K.,
    3. Hsu C. C.
    Technical Considerations in the Development of Prefilled Syringes for Protein Products. Am. Pharm. Rev. 2006, 9, 77–83.
    OpenUrl
  4. 4.↵
    1. Sacha G.,
    2. Rogers J. A.,
    3. Miller R. L.
    Pre-Filled Syringes: A Review of the History, Manufacturing and Challenges. Pharm. Dev. Technol. 2015, 20 (1), 1–11.
    OpenUrl
  5. 5.↵
    1. Saluja A.,
    2. Kalonia D. S.
    Nature and Consequences of Protein-Protein Interactions in High Protein Concentration Solutions. Int. J. Pharm. 2008, 358 (1–2), 1–15.
    OpenUrlPubMed
  6. 6.↵
    1. Kanai S.,
    2. Liu J.,
    3. Patapoff T. W.,
    4. Shire S. J.
    Reversible Self-Association of a Concentrated Monoclonal Antibody Solution Mediated by Fab-Fab Interaction That Impacts Solution Viscosity. J. Pharm. Sci. 2008, 97 (10), 4219–4227.
    OpenUrlCrossRefPubMed
  7. 7.↵
    1. Janowski R.,
    2. Kozak M.,
    3. Jankowska E.,
    4. Grzonka Z.,
    5. Grubb A.,
    6. Abrahamson M.,
    7. Jaskolski M.
    Human Cystatin C, an Amyloidogenic Protein, Dimerizes Through Three-Dimensional Domain Swapping. Nat. Struct. Biol. 2001, 8 (4), 316–320.
    OpenUrlCrossRefPubMedWeb of Science
  8. 8.↵
    1. Liu Y.,
    2. Eisenberg D.
    3D Domain Swapping: As Domains Continue to Swap. Protein Sci. 2002, 11 (6), 1285–1299.
    OpenUrlCrossRefPubMedWeb of Science
  9. 9.↵
    1. Jahn T. R.,
    2. Radford S. E.
    The Yin and Yang of Protein Folding. FEBS J. 2005, 272 (23), 5962–5970.
    OpenUrlCrossRefPubMed
  10. 10.↵
    1. Mozhaev V. V.,
    2. Heremans K.,
    3. Frank J.,
    4. Masson P.,
    5. Balny C.
    High Pressure Effects on Protein Structure and Function. Proteins: Struc. Func. 1996, 24 (1), 81–91.
    OpenUrl
  11. 11.↵
    1. Ledward D. A.
    Effects of Pressure on Protein Structure. High Press. Res. 2000, 19 (1–6), 1–10.
    OpenUrl
  12. 12.↵
    1. Kobko N.,
    2. Dannenberg J. J.
    Cooperativity in Amide Hydrogen Bonding Chains. Relation Between Energy, Position, and H-Bond Chain Length in Peptide and Protein Folding Models. J. Phys. Chem. A 2003, 107 (48), 10389–10395.
    OpenUrlCrossRef
  13. 13.↵
    1. Chi E. Y.,
    2. Krishnan S.,
    3. Randolph T. W.,
    4. Carpenter J. F.
    Physical Stability of Proteins in Aqueous Solution: Mechanism and Driving Forces in Nonnative Protein Aggregation. Pharm. Res. 2003, 20 (9), 1325–1336.
    OpenUrlCrossRefPubMedWeb of Science
  14. 14.↵
    1. De Gennes P. G.
    Coil-Strength Transition of Dilute Polymers Under Ultrahigh Velocity-Gradients. J. Chem. Phys. 1974, 60 (12), 5030–5042.
    OpenUrlCrossRefWeb of Science
  15. 15.↵
    1. Zheng F.,
    2. Robertson A. P.,
    3. Abongwa M.,
    4. Yu E. W.,
    5. Martin R. J.
    The Ascaris suum Nicotinic Receptor, ACR-16, as a Drug Target: Four Novel Negative Allosteric Modulators from Virtual Screening. Int. J. Parasitol. Drugs Drug Resist. 2016, 6 (1), 60–73.
    OpenUrl
  16. 16.↵
    1. Robinson G. W.,
    2. Cho C. H.
    Role of Hydration Water in Protein Unfolding. Biophys. J. 1999, 77 (6), 3311–3318.
    OpenUrlCrossRefPubMed
  17. 17.↵
    1. Chen X.,
    2. Weber I.,
    3. Harrison R. W.
    Hydration Water and Bulk Water in Proteins Have Distinct Properties in Radial Distributions Calculated from 105 Atomic Resolution Crystal Structures. J. Phys. Chem. B 2008, 112 (38), 12073–12080.
    OpenUrlPubMed
  18. 18.↵
    1. Perticaroli S.,
    2. Ehlers G.,
    3. Stanley C. B.,
    4. Mamontov E.,
    5. O'Neill H.,
    6. Zhang Q.,
    7. Cheng X.,
    8. Myles D. A.,
    9. Katsaras J.,
    10. Nickels J. D.
    Description of Hydration Water in Protein (Green Fluorescent Protein) Solution. J. Am. Chem. Soc. 2017, 139 (3), 1098–1105.
    OpenUrl
  19. 19.↵
    1. Bekard I. B.,
    2. Asimakis P.,
    3. Bertolini J.,
    4. Dunstan D. E.
    The Effects of Shear Flow on Protein Structure and Function. Biopolymers 2011, 95 (11), 733–745.
    OpenUrlPubMedWeb of Science
  20. 20.↵
    1. Dobson J.,
    2. Kumar A.,
    3. Willis L. F.,
    4. Tuma R.,
    5. Higazi D. R.,
    6. Turner R.,
    7. Lowe D. C.,
    8. Ashcroft A. E.,
    9. Radford S. E.,
    10. Kapur N.,
    11. Brockwell D. J.
    Inducing Protein Aggregation by Extensional Flow. Proc. Natl. Acad. Sci. U.S.A. 2017, 114 (18), 4673–4678.
    OpenUrlAbstract/FREE Full Text
  21. 21.↵
    1. Jaspe J.,
    2. Hagen S.
    J. Do Protein Molecules Unfold in a Simple Shear Flow? Biophys. J. 2006, 91 (9), 3415–3424.
    OpenUrlCrossRefPubMedWeb of Science
  22. 22.↵
    1. Atkins E. D. T.,
    2. Taylor M. A.
    Elongational Flow Studies on DNA in Aqueous Solution and Stress-Induced Scission of the Double Helix. Biopolymers 1992, 32 (8), 911–923.
    OpenUrlCrossRefPubMedWeb of Science
  23. 23.↵
    1. Larson J. W.,
    2. Yantz G. R.,
    3. Zhong Q.,
    4. Charnas R.,
    5. D'Antoni C. M.,
    6. Gallo M. V.,
    7. Gillis K. A.,
    8. Neely L. A.,
    9. Phillips K. M.,
    10. Wong G. G.,
    11. Gullans S. R.,
    12. Gilmanshin R.
    Single DNA Molecule Stretching in Sudden Mixed Shear and Elongational Microflows. Lab Chip 2006, 6 (9), 1187–1199.
    OpenUrlCrossRefPubMed
  24. 24.↵
    1. Smith D. E.,
    2. Babcock H. P.,
    3. Chu S.
    Single-Polymer Dynamics in Steady Shear Flow. Science 1999, 283 (5408), 1724–1727.
    OpenUrlAbstract/FREE Full Text
  25. 25.↵
    1. LeDuc P.,
    2. Haber C.,
    3. Bao G.,
    4. Wirtz D.
    Dynamics of Individual Flexible Polymers in a Shear Flow. Nature 1999, 399 (6736), 564–566.
    OpenUrlCrossRefPubMedWeb of Science
  26. 26.↵
    1. Long Q.,
    2. Xu X. Y.,
    3. Ariff B.,
    4. Thom S.,
    5. Hughes A. D.,
    6. Stanton A. V.
    Reconstruction of Blood Flow Patterns in a Human Carotid Bifurcation: A Combined CFD and MRI Study. J. Magn. Reson. Imaging 2000, 11 (3), 299–311.
    OpenUrlCrossRefPubMedWeb of Science
  27. 27.↵
    1. Marshall I.,
    2. Zhao S.,
    3. Papathanasopoulou P.,
    4. Hoskins P.,
    5. Xu X. Y.
    MRI and CFD Studies of Pulsatile Flow in Healthy and Stenosed Carotid Bifurcation Models. J. Biomech. 2004, 37 (5), 679–687.
    OpenUrlCrossRefPubMedWeb of Science
  28. 28.↵
    1. Byun H. S.,
    2. Rhee K.
    CFD Modeling of Blood Flow Following Coil Embolization of Aneurysms. Med. Eng. Phys. 2004, 26 (9), 755–761.
    OpenUrlCrossRefPubMedWeb of Science
  29. 29.↵
    1. Acheson D. J.
    Elementary Fluid Dynamics; Oxford Applied Mathematics and Computing Science Series; Oxford University Press: U.K., 1990.
  30. 30.↵
    1. Gad-el-Hak M.
    Stokes' Hypothesis for a Newtonian, Isotropic Fluid. J. Fluids Eng. 1995, 117 (1), 3–5.
    OpenUrl
  31. 31.↵
    1. Hinze J. O.
    Momentum and Mechanical-Energy Balance Equations for a Flowing Homogeneous Suspension with Slip Between the Two Phases. Appl. Sci. Res. A 1963, 11 (1), 33–46.
    OpenUrl
  32. 32.↵
    1. Manninen M.,
    2. Taivassalo V.,
    3. Kallio S.
    On the Mixture Model for Multiphase Flow. VTT Publication 288; VTT Technical Research Centre of Finland: Espoo, 1996.
  33. 33.↵
    1. Hiltunen K.,
    2. Jasberg A.,
    3. Kallo S.,
    4. Karema H.,
    5. Kataja M.,
    6. Koponen A.,
    7. Manninen M.,
    8. Taivassal V.
    Multiphase Flow Dynamics: Theory and Numerics. VTT Publication 722; VTT Technical Research Centre of Finland: Espoo, 2009.
  34. 34.↵
    1. Phillips R. J.,
    2. Armstrong R. C.,
    3. Brown R. A.,
    4. Graham A. L.,
    5. Abbot J. R.
    A Constitutive Equation for Concentrated Suspension that Accounts for Shear-Induced Particle Migration. Phys. Fluids A 1992, 4 (1), 30–40.
    OpenUrlCrossRefWeb of Science
  35. 35.↵
    1. Subia S. R.,
    2. Ingber M. S.,
    3. Mondy L. A.,
    4. Altobelli S. A.,
    5. Graham A. L.
    Modelling of Concentrated Suspensions Using a Continuum Constitutive Equation. J. Fluid Mech. 1998, 373 (1), 193–219.
    OpenUrlCrossRefWeb of Science
  36. 36.↵
    1. Rao R.,
    2. Mondy L.,
    3. Sun A.,
    4. Altobelli S.
    A Numerical and Experimental Study of Batch Sedimentation and Viscous Resuspension. Int. J. Numer. Meth. Fluids 2002, 39 (6), 465–483.
    OpenUrl
  37. 37.↵
    1. Stokes G. G.
    On the Effect of the Internal Friction of Fluids in the Motion of Pendulums. Trans. Cambridge Philos. Soc. 1851, 9, 8–106.
    OpenUrl
  38. 38.↵
    1. Yang H.,
    2. Fan M.,
    3. Liu A.,
    4. Dong L.
    General Formulas for Drag Coefficient and Settling Velocity of Sphere Based on Theoretical Law. Int. J. Mining Sci. Tech. 2015, 25 (2), 219–223.
    OpenUrl
  39. 39.↵
    1. Krieger I. M.
    Rheology of Monodisperse Lattices. Advan. Colloid Interface Sci. 1972, 3 (2), 111–136.
    OpenUrl
  40. 40.↵
    1. Thomas D. G.
    Transport Characteristics of Suspensions VIII: A Note on the Viscosity of Newtonian Suspensions of Uniform Spherical Particles. J. Colloid Sci. 1965, 20 (3), 267–277.
    OpenUrlCrossRefWeb of Science
  41. 41.↵
    COMSOL Multiphysics User Manual, Mixture Model, Multiphase Flow, Fluid Flow Module, COMSOL Multiphysics, COMSOL Inc.
  42. 42.↵
    1. Chen Y.,
    2. Radford S. E.,
    3. Brockwell D. J.
    Force-Induced Remodelling of Proteins and their Complexes. Curr. Opin. Struct. Biol. 2015, 30, 89–99.
    OpenUrlCrossRefPubMed
  43. 43.↵
    1. Majekodunmi S. O.
    A Review on Centrifugation in the Pharmaceutical Industry. Am. J. Biomed. Eng. 2015, 5 (2), 67–78.
    OpenUrl
  44. 44.↵
    1. Segre G.,
    2. Silberberg A.
    Behavior of Macroscopic Rigid Spheres in Poiseuille Flow Part 2. Experimental Results and Interpretation. J. Fluid Mech. 1962, 14 (1), 136–157.
    OpenUrlCrossRefWeb of Science
  45. 45.↵
    1. Myers J. K.,
    2. Pace C. N.,
    3. Scholtz J. M.
    Denaturant m Values and Heat Capacity Changes: Relation to Changes in Accessible Surface Areas of Protein Unfolding. Protein Sci. 1995, 4 (10), 2138–2148.
    OpenUrlCrossRefPubMedWeb of Science
  46. 46.↵
    1. Dazhi G.,
    2. Tanner R. I.
    The Drag on a Sphere in a Power-Law Fluid. J. Nonnewton. Fluid Mech. 1985, 17 (1), 1–12.
    OpenUrl
  47. 47.↵
    1. Perktold K.,
    2. Resch M.,
    3. Florian H.
    Pulsatile Non-Newtonian Flow Characteristics in a Three-Dimensional Human Carotid Bifurcation Model. J. Biomech. Eng. 1991, 113 (4), 464–475.
    OpenUrlCrossRefPubMedWeb of Science
  48. 48.↵
    1. Abraham F.,
    2. Behr M.,
    3. Heinkenschloss M.
    Shape Optimisation in Steady Blood Flow: A Numerical Study of Non-Newtonian Effects. Comput. Methods Biomech. Biomed. Eng. 2005, 8 (2), 127–137.
    OpenUrlPubMed
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 73 (3)
PDA Journal of Pharmaceutical Science and Technology
Vol. 73, Issue 3
May/June 2019
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Local Concentrating, Not Shear Stress, That May Lead to Possible Instability of Protein Molecules During Syringe Injection: A Fluid Dynamic Study with Two-Phase Flow Model
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
8 + 11 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Local Concentrating, Not Shear Stress, That May Lead to Possible Instability of Protein Molecules During Syringe Injection: A Fluid Dynamic Study with Two-Phase Flow Model
Lei Xing, Yue Li, Tonglei Li
PDA Journal of Pharmaceutical Science and Technology May 2019, 73 (3) 260-275; DOI: 10.5731/pdajpst.2018.009357

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Local Concentrating, Not Shear Stress, That May Lead to Possible Instability of Protein Molecules During Syringe Injection: A Fluid Dynamic Study with Two-Phase Flow Model
Lei Xing, Yue Li, Tonglei Li
PDA Journal of Pharmaceutical Science and Technology May 2019, 73 (3) 260-275; DOI: 10.5731/pdajpst.2018.009357
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • 1. Introduction
    • 2. Model Development
    • 3. Results and Discussion
    • 4. Conclusion
    • Conflict of Interest Declaration
    • Acknowledgements
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Container Closure Integrity of Vial Primary Packaging Systems under Frozen Storage Conditions: A Case Study
  • Advances in Large Volume Subcutaneous Injections: A Pilot Tolerability Study of an Innovative Needle-Free Injection Platform
  • Quantification and Stability Impact Assessment of Drop Stresses in Biologic Drug Products
Show more Research

Similar Articles

Keywords

  • extensional flow
  • aggregation
  • unfolding
  • two-phase flow
  • Protein formulation
  • auto-injector

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2023 PDA Journal of Pharmaceutical Science and Technology ISSN: 1079-7440

Powered by HighWire