Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleResearch

A Mechanistic Understanding of Polysorbate 80 Oxidation in Histidine and Citrate Buffer Systems—Part 2

Laura M. Doyle (Drbohlav), Anant Navanithan Sharma, Ganapathy Gopalrathnam, Lihua Huang and Scott Bradley
PDA Journal of Pharmaceutical Science and Technology July 2019, 73 (4) 320-330; DOI: https://doi.org/10.5731/pdajpst.2018.009639
Laura M. Doyle (Drbohlav)
1Department of Pharmaceutical Chemistry, University of Kansas, Simons Biosciences Research Laboratories, 2095 Constant Ave. Lawrence, KS 66047;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anant Navanithan Sharma
2Bioproduct Pharma Design, Lilly Research Laboratories, Eli Lilly and Company, 1400 West Raymond St., Indianapolis, IN 46221;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: sharma_anant_n@lilly.com
Ganapathy Gopalrathnam
2Bioproduct Pharma Design, Lilly Research Laboratories, Eli Lilly and Company, 1400 West Raymond St., Indianapolis, IN 46221;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lihua Huang
3Protein Characterization, Lilly Research Laboratories, Eli Lilly and Company, 1400 West Raymond St., Indianapolis, IN 46221;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Scott Bradley
4Analytical Development, Lilly Research Laboratories, Eli Lilly and Company, 1400 West Raymond St., Indianapolis, IN 46221
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

In our previously published work, we reported rapid polysorbate 80 (PS80) oxidation in a histidine buffer after brief exposure to stainless steel and the ability of citrate and EDTA to prevent this oxidation. The focus of our current study was to mechanistically understand PS80 oxidation by studying the impacts of temperature, light, and stainless steel and the role of citrate and EDTA. Additionally, PS80 oxidation was studied in three different buffer systems: histidine, citrate, and phosphate. When the PS80-containing buffers in glass containers were exposed to the elevated temperature of 50°C, no PS80 oxidation was observed in either the histidine or the citrate buffer systems after 30 days; however, PS80 oxidation was observed in the phosphate buffer system within 14 days. These results demonstrated that temperature does not initiate PS80 oxidation in the histidine or the citrate buffer systems, but it may be a factor in the phosphate buffer system. When the three buffer systems containing PS80 were exposed to 20%, 50%, or 100% ICH Q1B light conditions and subsequently incubated in the dark at 50°C, the PS80 in the phosphate buffer system underwent oxidation within 7 days, whereas the PS80 in the histidine and the citrate buffer systems showed oxidation products only after 14 and 35 days, respectively. PS80 in the phosphate buffer system seemed to be the most vulnerable to light as PS80 in both the histidine and the citrate buffer systems underwent oxidation to a lesser extent, with faster oxidation occurring in the histidine buffer system than in the citrate buffer system. Finally, the ability of citrate and EDTA to act as not only chelators but also radical quenchers/scavengers was demonstrated when a metal ion, Fe2+, was spiked into the histidine buffer containing PS80. While radicals could not be unambiguously identified by NMR or EPR, the observation of PS80 oxidation products indicated their presence.

LAY ABSTRACT: In our previously published work, we reported rapid polysorbate 80 (PS80) oxidation in a histidine buffer after brief exposure to stainless steel and the ability of citrate and EDTA to prevent this oxidation. The focus of our current study was to mechanistically understand PS80 oxidation by studying the impacts of temperature, light, and stainless steel and the role of citrate and EDTA. Additionally, PS80 oxidation was studied in three different buffer systems: histidine, citrate, and phosphate. The temperature study demonstrated that PS80 oxidation in the histidine or the citrate buffer systems is not initiated by temperature, but may be a factor in the phosphate buffer system. PS80 in the phosphate buffer system seemed to be the most vulnerable to light, as PS80 in both the histidine and the citrate buffer systems underwent oxidation at a lower level, with the histidine buffer system showing more rapid oxidation than the citrate buffer system. Finally, the ability of citrate and EDTA to act as not only chelators but also radical quenchers/scavengers was demonstrated when a metal ion, Fe2+, was spiked into the histidine buffer containing PS80. While neither NMR nor EPR could definitively identify the presence of free radicals, the observation of PS80 oxidation products indicates that they were present.

  • Polysorbate 80 (PS 80)
  • Oxidation
  • Histidine
  • Citrate
  • Phosphate
  • Fe2+
  • EDTA
  • Stainless steel
  • Temperature
  • Light
  • © PDA, Inc. 2019
View Full Text

PDA members receive access to all articles published in the current year and previous volume year. Institutional subscribers received access to all content. Log in below to receive access to this article if you are either of these.  

If you are neither or you are a PDA member trying to access an article outside of your membership license, then you must purchase access to this article (below). If you do not have a username or password for JPST, you will be required to create an account prior to purchasing. 

Full issue PDFs are for PDA members only.

Note to pda.org users

The PDA and PDA bookstore websites (www.pda.org and www.pda.org/bookstore) are separate websites from the PDA JPST website. When you first join PDA, your initial UserID and Password are sent to HighWirePress to create your PDA JPST account. Subsequent UserrID and Password changes required at the PDA websites will not pass on to PDA JPST and vice versa. If you forget your PDA JPST UserID and/or Password, you can request help to retrieve UserID and reset Password below.

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

patientACCESS

patientACCESS - Patients desiring access to articles

Full issue PDFs are for PDA members only. You can join PDA at www.pda.org. 

PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 73 (4)
PDA Journal of Pharmaceutical Science and Technology
Vol. 73, Issue 4
July/August 2019
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A Mechanistic Understanding of Polysorbate 80 Oxidation in Histidine and Citrate Buffer Systems—Part 2
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
14 + 4 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
A Mechanistic Understanding of Polysorbate 80 Oxidation in Histidine and Citrate Buffer Systems—Part 2
Laura M. Doyle (Drbohlav), Anant Navanithan Sharma, Ganapathy Gopalrathnam, Lihua Huang, Scott Bradley
PDA Journal of Pharmaceutical Science and Technology Jul 2019, 73 (4) 320-330; DOI: 10.5731/pdajpst.2018.009639

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
A Mechanistic Understanding of Polysorbate 80 Oxidation in Histidine and Citrate Buffer Systems—Part 2
Laura M. Doyle (Drbohlav), Anant Navanithan Sharma, Ganapathy Gopalrathnam, Lihua Huang, Scott Bradley
PDA Journal of Pharmaceutical Science and Technology Jul 2019, 73 (4) 320-330; DOI: 10.5731/pdajpst.2018.009639
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials
    • Methods
    • Experimental
    • Results and Discussion
    • Conclusion
    • Conflict of Interest Declaration
    • Acknowledgements
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Physicochemical Excipient-Container Interactions in Prefilled Syringes and Their Impact on Syringe Functionality
  • Google Scholar

More in this TOC Section

  • Quantitative and Qualitative Evaluation of Microorganism Profile Identified in Bioburden Analysis in a Biopharmaceutical Facility in Brazil: Criteria for Classification and Management of Results
  • Evaluation of Extreme Depyrogenation Conditions on the Surface Hydrolytic Resistance of Glass Containers for Pharmaceutical Use
  • A Holistic Approach for Filling Volume Variability Evaluation and Control with Statistical Tool
Show more Research

Similar Articles

Keywords

  • Polysorbate 80 (PS 80)
  • oxidation
  • histidine
  • Citrate
  • Phosphate
  • Fe2+
  • EDTA
  • stainless steel
  • Temperature
  • Light

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire