Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Article CommentaryCommentary

Probable Scenarios of Process Contamination with Cutibacterium (Propionibacterium) acnes in Mammalian Cell Bioreactor

Angel L. Salaman-Byron
PDA Journal of Pharmaceutical Science and Technology September 2020, 74 (5) 592-601; DOI: https://doi.org/10.5731/pdajpst.2019.010710
Angel L. Salaman-Byron
Janssen Biotech Inc., 200 Great Valley Parkway, Malvern PA 19355
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: angelsalaman@yahoo.com
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    American Society of Mechanical Engineers. ASME BPE-2016: Bioprocessing Equipment. ASME: New York, 2016.
  2. 2.↵
    1. Junker B.,
    2. Lester M.,
    3. Leporati J.,
    4. Schmitt J.,
    5. Kovatch M.,
    6. Borysewicz S.,
    7. Maciejak W.,
    8. Seeley A.,
    9. Hesse M.,
    10. Connors N.,
    11. Brix T.,
    12. Creveling E.,
    13. Salmon P.
    Sustainable Reduction of Bioreactor Contamination in an Industrial Fermentation Pilot Plant. J. Biosci. Bioeng. 2006, 102 (4), 251–268.
    OpenUrlCrossRefPubMed
  3. 3.↵
    1. Suvarna K.,
    2. Lolas A.,
    3. Hughes P.,
    4. Friedman R.
    Case Studies of Microbial Contamination in Biologic Product Manufacturing. Am. Pharm. Rev. 2011, 14 (1), 50–55.
    OpenUrl
  4. 4.↵
    1. Blackwell J.
    Troubleshooting Bacterial Contamination in Bioreactors. BioProcess Online [Online] 2017. https://www.bioprocessonline.com/doc/troubleshooting-bacterial-contamination-in-bioreactors-0001 (May 8, 2019).
  5. 5.↵
    1. Kirschbaum J. O.,
    2. Kligman A. M.
    The Pathogenic Role of Corynebacterium acnes in Acne vulgaris. Arch. Dermatol. 1963, 88 (6), 832–833.
    OpenUrlCrossRefPubMedWeb of Science
  6. 6.↵
    1. Puhvel S. M.
    Characterization of Corynebacterium acnes. J. Gen. Microbiol. 1968, 50 (2), 313–320.
    OpenUrlCrossRefPubMed
  7. 7.↵
    1. Kim J.
    Review of the Innate Immune Response in Acne vulgaris: Activation of Toll-Like Receptor 2 in Acne Triggers Inflammatory Cytokine Responses. Dermatology 2005, 211 (3), 193–198.
    OpenUrlCrossRefPubMed
  8. 8.↵
    1. Scholz F. P.,
    2. Kilian M.
    The Natural History of Cutaneous Propionibacteria, and Reclassification of Selected Species within the Genus Propionibacterium to the Proposed Novel Genera Acidipropionibacterium gen. nov., Cutibacterium gen. nov. and Pseudopropionibacterium gen. nov. Int. J. Syst. Evol. Microbiol. 2016, 66 (11), 4422–4432.
    OpenUrlCrossRef
  9. 9.↵
    1. Piwowarek K.,
    2. Lipińska E.,
    3. Hać-Szymańczuk E.,
    4. Kieliszek M.,
    5. Ścibisz J.
    Propionibacterium spp.—Source of Propionic Acid, Vitamin B12, and Other Metabolites Important for the Industry. Appl. Microbiol. Biotechnol. 2018, 102, 515–538.
    OpenUrlCrossRef
  10. 10.↵
    1. Dréno B.,
    2. Pécastaings S.,
    3. Corvec S.,
    4. Veraldi S.,
    5. Khammari A.,
    6. Roques C.
    Cutibacterium acnes (Propionibacterium acnes) and Acne vulgaris: A Brief Look at the Latest Updates. J. Eur. Acad. Dermatol. Venereol. 2018, 32 (S2), 5–14.
    OpenUrl
  11. 11.↵
    1. Acherman Y.,
    2. Goldstein E. J.,
    3. Coenye T.,
    4. Shirtliff M. E.
    Propionibacterium acnes: From Commensal to Opportunistic Biofilm-Associated Implant Pathogen. Clin. Microbiol. Rev. 2014, 27 (3), 419–440.
    OpenUrlAbstract/FREE Full Text
  12. 12.↵
    1. Kvich L.,
    2. Jensen P. Ø.,
    3. Justesen U. S.,
    4. Bjarnsholt T.
    Incidence of Propionibacterium acnes in Initially Culture-Negative Thioglycollate Broths—A Prospective Cohort Study at a Danish University Hospital. Clin. Microbiol. Infect. 2016, 22 (11), 941–945.
    OpenUrl
  13. 13.↵
    1. Kumar B.,
    2. Pathak R.,
    3. Bertin Mary P.,
    4. Jha D.,
    5. Sardana K.,
    6. Gautam H. K.
    New Insights into Acne Pathogenesis: Exploring the Role of Acne-Associated Microbial Populations. Dermatologica Sinica 2016, 34 (2), 67–73.
    OpenUrl
  14. 14.↵
    1. Gallo R. L.,
    2. Nakatsuji T.
    Microbial Symbiosis with the Innate Immune Defense System of the Skin. J. Invest. Dermatol. 2011, 131 (10), 1974–1980.
    OpenUrlCrossRefPubMedWeb of Science
  15. 15.↵
    1. Costello E. K.,
    2. Lauber C. L.,
    3. Hamady M.,
    4. Fierer N.,
    5. Gordon J. J.,
    6. Knight R.
    Bacterial Community Variation in Human Body Habitats Across Space and Time. Science 2009, 326 (5960), 1694–1697.
    OpenUrlAbstract/FREE Full Text
  16. 16.↵
    1. Bojar R. A.,
    2. Holland K.T.
    Acne and Propionibacterium acnes. Clin. Dermatol. 2004, 22 (5), 375–379.
    OpenUrlCrossRefPubMedWeb of Science
  17. 17.↵
    1. Perry A.,
    2. Lambert P.
    Propionibacterium acnes: Infection Beyond the Skin. Expert Review of Anti-Infective Therapy 2011, 9 (12), 1149–1156.
    OpenUrlCrossRefPubMed
  18. 18.↵
    1. Jahns A. C.,
    2. Alexeyev O. A.
    Three-Dimensional Distribution of Propionibacterium acnes Biofilms in Human Skin. Exp. Dermatol. 2014, 23(9), 687–689.
    OpenUrl
  19. 19.↵
    1. O’Neill A. M.,
    2. Gallo R. L.
    Host-Microbiome Interactions and Recent Progress into Understanding the Biology of Acne vulgaris. Microbiome 2018, 6 (177), 1–16.
    OpenUrlCrossRef
  20. 20.↵
    1. Nielsen P. A.
    Role of Reduced Sulfur Compounds in Nutrition of Propionibacterium acnes. J. Clin. Microbiol. 1983, 17 (2), 276-279.
    OpenUrlAbstract/FREE Full Text
  21. 21.↵
    1. Tax. G.,
    2. Puskás R.,
    3. Kónya Z.,
    4. Biró T.,
    5. Kemény L.,
    6. Szabó K.
    Propionic Acid Produced by Propionibacterium acnes Strains Contributes to Their Pathogenicity. Acta Derm.-Venereologica 2016, 96 (1), 43–49.
    OpenUrl
  22. 22.↵
    1. Shu M.,
    2. Kuo S.,
    3. Wang Y.,
    4. Jiang Y.,
    5. Liu Y.-T.,
    6. Gallo R. L.,
    7. Huang C.-M.
    Porphyrin Metabolism in Human Skin Commensal Propionibacterium acnes Bacteria: Potential Application to Monitor Human Radiation Risk. Curr. Med. Chem. 2013, 20 (4), 562–568.
    OpenUrl
  23. 23.↵
    1. Corvec S.
    Clinical and Biological Features of Cutibacterium (Formerly Propionibacterium) avidum, an Underrecognized Microorganism. Clin. Microbiol. Rev. 2018, 31 (3), 1–42.
    OpenUrlCrossRef
  24. 24.↵
    1. Portillo E. M.,
    2. Corvec S.,
    3. Borens O.,
    4. Trampuz A.
    Propionibacterium acnes: An Underestimated Pathogen in Implant-Associated Infections. BioMed Res. Int. 2013, 2013 (SI), 804391.
    OpenUrl
  25. 25.↵
    1. Midgley M.,
    2. Mohd Noor M. A.
    The interaction of oxygen with Propionibacterium acnes. FEMS Microbiol. Lett. 1984, 23 (2–3), 183–186.
    OpenUrlCrossRefWeb of Science
  26. 26.↵
    1. Faille C.,
    2. Jullien C.,
    3. Fontaine F.,
    4. Bellon-Fontaine M.-N.,
    5. Slomianny C.,
    6. Benezech T.
    Adhesion of Bacillus Spores and Escherichia coli Cells to Inert Surfaces: Role of Surface Hydrophobicity. Can. J. Microbiol. 2002, 48 (8), 728–738.
    OpenUrlCrossRefPubMedWeb of Science
  27. 27.↵
    1. Knobben B. A. S.,
    2. van der Mei H. C.,
    3. van Horn J. R.,
    4. Busscher H. J.
    Transfer of Bacteria between Biomaterials Surfaces in the Operating Room—An Experimental Study. J. Biomed. Mat. Res. 2007, 80A (4), 790–799.
    OpenUrl
  28. 28.↵
    1. Lange-Asschenfeldt B.,
    2. Marenbach D.,
    3. Lang C.,
    4. Patzelt A.,
    5. Ulrich M.,
    6. Maltusch A.,
    7. Terhorst D.,
    8. Stockfleth E.
    Distribution of Bacteria in the Epidermal Layers and Hair Follicles of the Human Skin. Skin Pharmacol. Physiol. 2011, 24 (6), 305–311.
    OpenUrlCrossRefPubMed
  29. 29.↵
    1. Salaman-Byron A. L.
    Limitations of Microbial Environmental Monitoring Methods in Cleanrooms. Am. Pharm. Rev. 2018, 21(3), 12–19.
    OpenUrl
  30. 30.↵
    1. Schneider M.,
    2. Marison I. W.,
    3. von Stockar U.
    The Importance of Ammonia in Mammalian Cell Culture. J. Biotechnol. 1996, 46 (3), 161–185.
    OpenUrlCrossRefPubMedWeb of Science
  31. 31.↵
    1. Dréno B.
    What is New in the Pathophysiology of Acne, An Overview. J. Eur. Acad. Dermatol. Venereol. 2017, 31 Suppl (5), 8–12.
    OpenUrl
  32. 32.↵
    1. Tyner H.,
    2. Patel R.
    Propionibacterium Acnes Biofilm-A Sanctuary for Staphlococcus aureus? Anaerobe 2016, 40, 63–67.
    OpenUrl
  33. 33.↵
    1. Voisard D.,
    2. Meuwly F.,
    3. Ruffieux P.-A.,
    4. Baer G.,
    5. Kadouri A.
    Potential of Cell Retention Techniques for Large-Scale High-Density Perfusion Culture of Suspended Mammalian Cells. Biotechnol. Bioeng. 2003, 82 (7), 751–765.
    OpenUrlPubMed
  34. 34.↵
    1. Li G.,
    2. Tam L.-K.,
    3. Tang J. X.
    Amplified Effect of Brownian Motion in Bacterial Near-Surface Swimming. Proc. Natl. Acad. Sci. U.S.A. 2008, 105(47), 18355–18359.
    OpenUrlAbstract/FREE Full Text
  35. 35.↵
    1. Cheung Y. F.,
    2. Fung C. H.,
    3. Walsh C.
    Stereochemistry of Propionyl-Coenzyme A and Pyruvate Carboxylations Catalyzed by Transcarboxylase. Biochemistry 1975, 14 (13), 2981–2986.
    OpenUrl
  36. 36.↵
    1. Onadipe A.,
    2. Ulvedal K.
    A Method for the Rapid Detection of Microbial Contaminants in Animal Cell Culture Processes. PDA J. Pharm. Sci. Technol. 2001, 55 (6), 337–345.
    OpenUrlAbstract/FREE Full Text
  37. 37.↵
    1. Baumstummler A.,
    2. Chollet R.,
    3. Meder H.,
    4. Rofel C.,
    5. Venchiarutti A.,
    6. Ribault S.
    Detection of Microbial Contaminants in Mammalian Cell Cultures Using a New Fluorescence-Based Staining Method. Lett. Appl. Microbiol. 2010, 51 (6), 671–677.
    OpenUrlPubMed
  38. 38.↵
    1. Perkowski C. A.
    Operational Aspects of Bioreactor Contamination Control. J. Parenter. Sci. Technol. 1990, 44 (3), 113–117.
    OpenUrlPubMed
  39. 39.↵
    1. Jagani H.,
    2. Hebbar K.,
    3. Gang S. S.,
    4. Raj P. V.,
    5. Rao J. V.
    An Overview of Fermenter and the Design Considerations to Enhance Its Productivity. Pharmacologyonline 2010, 1, 261–301.
    OpenUrl
  40. 40.↵
    1. Sandle T.,
    2. Saghee M.R.
    Some Considerations for the Implementation of Disposable Technology and Single-Use Systems in Biopharmaceuticals. J. Commer. Biotechnol. 2011, 17 (4), 319–329.
    OpenUrl
  41. 41.↵
    1. Dubiel R.,
    2. Vogel J. D.
    Choosing the Optimal Hygienic Seal for Enhanced Process Performance. Pharmaceutical Engineering 2013, 33 (5), 1–6.
    OpenUrl
  42. 42.↵
    1. Suvarna K.,
    2. Lolas A.,
    3. Hughes P.,
    4. Friedman R.
    Case Studies of Microbial Contamination in Biologic Product Manufacturing. Am. Pharm. Rev. [Online] 2011, 14 (1). https://www.americanpharmaceuticalreview.com/Featured-Articles/36755-Case-Studies-of-Microbial-Contamination-in-Biologic-Product-Manufacturing/ (August 8, 2019).
  43. 43.↵
    1. Sutton S.
    Successful Microbiological Investigations. Am. Pharm. Rev. [Online] 2011, 14 (2). https://www.americanpharmaceuticalreview.com/Featured-Articles/37190-Successful-Microbiological-Investigations/ (August 8, 2019).
  44. 44.↵
    1. Moldenhauer J.
    Conducting Microbial Investigations. Am. Pharm. Rev. [Online] 2015, 15 (5). https://www.americanpharmaceuticalreview.com/Featured-Articles/177313-Conducting-Microbial-Investigations/ (August 8, 2019).
  45. 45.↵
    1. McCullough K. Z.,
    2. Moldenhauer J.
    1. McCullough K. Z.,
    2. Moldenhauer J.
    Introduction. In Microbial Risk and Investigations. McCullough K. Z., Moldenhauer J., Eds.; PDA/DHI: Bethesda, MD, 2015; Chapter 1.
  46. 46.↵
    1. Gilles N. T.,
    2. Marty E.,
    3. Roesti D.,
    4. Staerk A.,
    5. Goverde M.
    Adoption of FMEA for Microbiological Contamination Risk Assessment to Implement USP Chapter <1115>. Am. Pharm. Rev. [Online] 2017, 20 (6). https://www.americanpharmaceuticalreview.com/Featured-Articles/343500-Adoption-of-FMEA-for-Microbiological-Contamination-Risk-Assessment-to-Implement-USP-Chapter-1115/ (August 8, 2019).
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 74 (5)
PDA Journal of Pharmaceutical Science and Technology
Vol. 74, Issue 5
September/October 2020
  • Table of Contents
  • Index by Author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Probable Scenarios of Process Contamination with Cutibacterium (Propionibacterium) acnes in Mammalian Cell Bioreactor
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
7 + 1 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Probable Scenarios of Process Contamination with Cutibacterium (Propionibacterium) acnes in Mammalian Cell Bioreactor
Angel L. Salaman-Byron
PDA Journal of Pharmaceutical Science and Technology Sep 2020, 74 (5) 592-601; DOI: 10.5731/pdajpst.2019.010710

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Probable Scenarios of Process Contamination with Cutibacterium (Propionibacterium) acnes in Mammalian Cell Bioreactor
Angel L. Salaman-Byron
PDA Journal of Pharmaceutical Science and Technology Sep 2020, 74 (5) 592-601; DOI: 10.5731/pdajpst.2019.010710
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Cutibacterium (Propionibacterium) acnes
    • Process Contamination Scenarios
    • Discussion
    • Conclusion
    • Disclaimer
    • Conflict of Interest Declaration
    • Acknowledgments
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Retrospective Evaluation of Cycled Resin in Viral Clearance Studies—A Multiple Company Collaboration—Post ICH Q5A(R2) Review
  • A Risk Based Approach for Pre-Use/Post-Sterilization Integrity Test Simulation During Bacterial Retention Testing as Part of the Process Specific Filter Validation of Sterilizing Grade Filters
  • Challenges and Solutions to Manufacturing of Low-Viscosity, Ultra-High Concentration IgG1 Drug Products: From Late Downstream Process to Final Fill Finish Processing
Show more Commentary

Similar Articles

Keywords

  • Cutibacterium acnes
  • Production bioreactor
  • Propionibacterium acnes
  • Biopharmaceutical
  • Microbial Contamination
  • Mammalian cell culture

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire