Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleResearch

An Investigation to Examine the Effect of the Elastomeric Surface Treatment on Protein Stability

Ranjana Singh, Lloyd Waxman, Liang Fang and Cathy Zhao
PDA Journal of Pharmaceutical Science and Technology May 2021, 75 (3) 230-244; DOI: https://doi.org/10.5731/pdajpst.2020.012120
Ranjana Singh
Scientific Insights Lab, West Pharmaceutical Services, Inc., Exton, PA 19341
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lloyd Waxman
Scientific Insights Lab, West Pharmaceutical Services, Inc., Exton, PA 19341
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Liang Fang
Scientific Insights Lab, West Pharmaceutical Services, Inc., Exton, PA 19341
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Cathy Zhao
Scientific Insights Lab, West Pharmaceutical Services, Inc., Exton, PA 19341
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: Cathy.Zhao@westpharma.com
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    U.S. Food and Drug Administration. Guidance for Industry: Container Closure Systems for Packaging Human Drugs and Biologics, 1999. FDA Web site. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/container-closure-systems-packaging-human-drugs-and-biologics (accessed March 5, 2021).
  2. 2.↵
    U.S. Food and Drug Administration. Guidance for Industry and FDA Staff: Use of International Standard ISO 10993-1,“Biological Evaluation of Medical Devices—Part 1: Evaluation and Testing within a Risk Management Process”, 2020. FDA Web site. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/use-international-standard-iso-10993-1-biological-evaluation-medical-devices-part-1-evaluation-and (accessed March 5, 2021).
  3. 3.↵
    U.S. Food and Drug Administration. Guidance for Industry and FDA Staff: Technical Considerations for Additive Manufactured Medical Devices, 2017. FDA Web site. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/technical-considerations-additive-manufactured-medical-devices. (accessed March 5, 2021)
  4. 4.↵
    U.S. Food and Drug Administration. Guidance for Industry and FDA Staff: Early Development Considerations for Innovative Combination Products, 2006. FDA Web site. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/early-development-considerations-innovative-combination-products (accessed March 5, 2021).
  5. 5.↵
    U.S. Food and Drug Administration. Guidance for Industry and FDA Staff: Current Good Manufacturing Practice Requirements for Combination Products, 2017. FDA Web site. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/current-good-manufacturing-practice-requirements-combination-products (accessed March 5, 2021).
  6. 6.↵
    1. Sacha G. A.,
    2. Saffell-Clemmer W.,
    3. Abram K.,
    4. Akers M. J.
    Practical Fundamentals of Glass, Rubber, and Plastic Sterile Packaging Systems. Pharm. Dev. Technol. 2010, 15 (1), 6–34.
    OpenUrlPubMed
  7. 7.↵
    1. Rosenberg A. S.,
    2. Verthelyi D.,
    3. Cherney B. W.
    Managing Uncertainty: A Perspective on Risk Pertaining to Product Quality Attributes as They Bear on Immunogenicity of Therapeutic Proteins. J. Pharm. Sci. 2012, 101 (10), 3560–3567.
    OpenUrlPubMed
  8. 8.↵
    1. Chantelau E.
    Silicone Oil Contamination of Insulin. Diabetic Med. 1989, 6 (3), 278.
    OpenUrlPubMed
  9. 9.↵
    1. Chantelau E.,
    2. Berger M.,
    3. Bohlken B.
    Silicone Oil Released from Disposable Insulin Syringes. Diabetes Care 1986, 9 (6), 672–673.
    OpenUrlFREE Full Text
  10. 10.↵
    1. Chantelau E.,
    2. Berger M.
    Pollution of Insulin with Silicone Oil, a Hazard of Disposable Plastic Syringes. Lancet 1985, 325 (8443), 1459.
    OpenUrl
  11. 11.↵
    1. Bernstein R. K.
    Clouding and Deactivation of Clear (Regular) Human Insulin: Association with Silicone Oil from Disposable Syringes? Diabetes Care 1987, 10 (6), 786–787.
    OpenUrlFREE Full Text
  12. 12.↵
    1. Baldwin R. N.
    Contamination of Insulin by Silicone Oil: A Potential Hazard of Plastic Insulin Syringes. Diabetic Med. 1988, 5 (8), 789–790.
    OpenUrlPubMed
  13. 13.↵
    1. Majumdar S.,
    2. Ford B. M.,
    3. Mar K. D.,
    4. Sullivan V. J.,
    5. Ulrich R. G.,
    6. D'souza A. J. M.
    Evaluation of the Effect of Syringe Surfaces on Protein Formulations. J. Pharm. Sci. 2011, 100 (7), 2563–2573.
    OpenUrlPubMed
  14. 14.↵
    1. Krayukhina E.,
    2. Tsumoto K.,
    3. Uchiyama S.,
    4. Fukui K.
    Effects of Syringe Material and Silicone Oil Lubrication on the Stability of Pharmaceutical Proteins. J. Pharm. Sci. 2015, 104 (2), 527–535.
    OpenUrlPubMed
  15. 15.↵
    1. Cordes A. A.,
    2. Carpenter J. F.,
    3. Randolph T. W.
    Accelerated Stability Studies of Abatacept Formulations: Comparison of Freeze-Thawing-and Agitation-Induced Stresses. J. Pharm. Sci. 2012, 101 (7), 2307–2315.
    OpenUrlCrossRefPubMed
  16. 16.↵
    1. Teska B. M.,
    2. Brake J. M.,
    3. Tronto G. S.,
    4. Carpenter J. F.
    Aggregation and Particle Formation of Therapeutic Proteins in Contact with a Novel Fluoropolymer Surface versus Siliconized Surfaces: Effects of Agitation in Vials and Prefilled Syringes. J. Pharm. Sci. 2016, 105 (7), 2053–2065.
    OpenUrl
  17. 17.↵
    1. Schellekens H.,
    2. Jiskoot W.
    Erythropoietin-Associated PRCA: Still an Unsolved Mystery. J. Immunotoxicol. 2006, 3 (3), 123–130.
    OpenUrlCrossRefPubMed
  18. 18.↵
    1. Boven K.,
    2. Knight J.,
    3. Bader F.,
    4. Rossert J.,
    5. Eckardt K.-U.,
    6. Casadevall N.
    Epoetin-Associated Pure Red Blood Cell Aplasia in Patients with Chronic Kidney Disease: Solving the Mystery. Nephrol. Dial. Transplant. 2005, 20 (Suppl. 3), iii33–iii40.
    OpenUrlCrossRefPubMedWeb of Science
  19. 19.↵
    1. Gerhardt A.,
    2. Bonam K.,
    3. Bee J. S.,
    4. Carpenter J. F.,
    5. Randolph T. W.
    Ionic Strength Affects Tertiary Structure and Aggregation Propensity of a Monoclonal Antibody Adsorbed to Silicone Oil Water Interfaces. J. Pharm. Sci. 2013, 102 (2), 429–440.
    OpenUrlPubMed
  20. 20.↵
    1. Gerhardt A.,
    2. Mcgraw N. R.,
    3. Schwartz D. K.,
    4. Bee J. S.,
    5. Carpenter J. F.,
    6. Randolph T. W.
    Protein Aggregation and Particle Formation in Prefilled Glass Syringes. J. Pharm. Sci. 2014, 103 (6), 1601–1612.
    OpenUrl
  21. 21.↵
    1. Basu P.,
    2. Krishnan S.,
    3. Thirumangalathu R.,
    4. Randolph T. W.,
    5. Carpenter J. F.
    IgG1 Aggregation and Particle Formation Induced by Silicone-Water Interfaces on Siliconized Borosilicate Glass Beads: A Model for Siliconized Primary Containers. J. Pharm. Sci. 2013, 102 (3), 852–865.
    OpenUrl
  22. 22.↵
    1. Thirumangalathu R.,
    2. Krishnan S.,
    3. Ricci M. S.,
    4. Brems D. N.,
    5. Randolph T. W.,
    6. Carpenter J. F.
    Silicone Oil- and Agitation-Induced Aggregation of a Monoclonal Antibody in Aqueous Solution. J. Pharm. Sci. 2009, 98 (9), 3167–3181.
    OpenUrlCrossRefPubMedWeb of Science
  23. 23.↵
    1. Mehta S. B.,
    2. Lewus R.,
    3. Bee J. S.,
    4. Randolph T. W.,
    5. Carpenter J. F.
    Gelation of a Monoclonal Antibody at the Silicone Oil Water Interface and Subsequent Rupture of the Interfacial Gel Results in Aggregation and Particle Formation. J. Pharm. Sci. 2015, 104 (4), 1282–1290.
    OpenUrl
  24. 24.↵
    1. Jones L. S.,
    2. Kaufmann A.,
    3. Middaugh C. R.
    Silicone Oil Induced Aggregation of Proteins. J. Pharm. Sci. 2005, 94 (4), 918–927.
    OpenUrlCrossRefPubMed
  25. 25.↵
    1. Ludwig D. B.,
    2. Carpenter J. F.,
    3. Hamel J.,
    4. Randolph T. W.
    Protein Adsorption and Excipient Effects on Kinetic Stability of Silicone Oil Emulsions. J. Pharm. Sci. 2010, 99 (4), 1721–1733.
    OpenUrlPubMedWeb of Science
  26. 26.↵
    1. Mahler H.-C.,
    2. Müller R.,
    3. Frieβ W.,
    4. Delille A.,
    5. Matheus S.
    Induction and Analysis of Aggregates in a Liquid IgG1-Antibody Formulation. Eur. J. Pharm. Biopharm. 2005, 59 (3), 407–417.
    OpenUrlCrossRefPubMed
  27. 27.↵
    1. Colombie S.,
    2. Gaunand A.,
    3. Lindet B.
    Lysozyme Inactivation under Mechanical Stirring: Effect of Physical and Molecular Interfaces. Enzyme Microb. Technol. 2001, 28 (9–10), 820–826.
    OpenUrlPubMed
  28. 28.↵
    1. Jorgensen L.,
    2. Bennedsen P.,
    3. Hoffmann S. V.,
    4. Krogh R. L.,
    5. Pinholt C.,
    6. Groenning M.,
    7. Hostrup S.,
    8. Bukrinsky J. T.
    Adsorption of Insulin with Varying Self-Association Profiles to a Solid Teflon Surface—Influence on Protein Structure, Fibrillation Tendency and Thermal Stability. Eur. J. Pharm. Sci. 2011, 42 (5), 509–516.
    OpenUrlCrossRefPubMed
  29. 29.↵
    1. Nayak A.,
    2. Dutta A. K.,
    3. Belfort G.
    Surface-Enhanced Nucleation of Insulin Amyloid Fibrillation. Biochem. Biophys. Res. Commun. 2008, 369 (2), 303–307.
    OpenUrlPubMed
  30. 30.↵
    1. Yan Y.,
    2. Seeman D.,
    3. Zheng B.,
    4. Kizilay E.,
    5. Xu Y.,
    6. Dubin P. L.
    pH-Dependent Aggregation and Disaggregation of Native β -Lactoglobulin in Low Salt. Langmuir 2013, 29 (14), 4584–4593.
    OpenUrl
  31. 31.↵
    Bristol-Myers Squibb. Orencia Package Insert. http://packageinserts.bms.com/pi/pi_orencia.pdf (accessed December 1, 2017).
  32. 32.↵
    UniProtKB—P02768 (ALBU_HUMAN). https://www.uniprot.org/uniprot/P02768. (accessed December 15, 2018).
  33. 33.↵
    1. Liu H. F.,
    2. Ma J.,
    3. Winter C.,
    4. Bayer R.
    Recovery and Purification Process Development for Monoclonal Antibody Production. mAbs 2010, 2 (5), 480–499.
    OpenUrlCrossRefPubMedWeb of Science
  34. 34.↵
    1. Wang W.,
    2. Ignatius A. A.,
    3. Thakkar S. V.
    Impact of Residual Impurities and Contaminants on Protein Stability. J. Pharm. Sci. 2014, 103 (5), 1315–1330.
    OpenUrl
  35. 35.↵
    1. Mahler H.,
    2. Friess W.,
    3. Grauschopf U.,
    4. Kiese S.
    Protein Aggregation: Pathways, Induction Factors and Analysis. J. Pharm. Sci. 2009, 98 (9), 2909–2934.
    OpenUrlCrossRefPubMed
  36. 36.↵
    1. Randolph T. W.,
    2. Schiltz E.,
    3. Sederstrom D.,
    4. Steinmann D.,
    5. Mozziconacci O.,
    6. Schöneich C.,
    7. Freund E.,
    8. Ricci M. S.,
    9. Carpenter J. F.,
    10. Lengsfeld C. S.
    Do Not Drop: Mechanical Shock in Vials Causes Cavitation, Protein Aggregation, and Particle Formation. J. Pharm. Sci. 2015, 104 (2), 602–611.
    OpenUrl
  37. 37.↵
    1. Krielgaard L.,
    2. Jones L. S.,
    3. Randolph T. W.
    Effect of Tween 20 on Freeze-Thawing- and Agitation-Induced Aggregation of Recombinant Human Factor XIII. J. Pharm. Sci. 1998, 87 (12), 1593–1603.
    OpenUrl
  38. 38.↵
    1. Kiese S.,
    2. Papppenberger A.,
    3. Friess W.,
    4. Mahler H.
    Shaken, Not Stirred: Mechanical Stress Testing of an IgG1 Antibody. J. Pharm. Sci. 2008, 97 (10), 4347–4366.
    OpenUrlCrossRefPubMedWeb of Science
  39. 39.↵
    1. Chou D. K.,
    2. Krishnamurthy R.,
    3. Randolph T. W.,
    4. Carpenter J. F.,
    5. Manning M. C.
    Effects of Tween 20 and Tween 80 on the Stability of Albutropin during Agitation. J. Pharm. Sci. 2005, 94 (6), 1368–1381.
    OpenUrlCrossRefPubMedWeb of Science
  40. 40.↵
    1. Bam N. B.,
    2. Cleland J. L.,
    3. Yang J.,
    4. Manning M. C.,
    5. Carpenter J. F.,
    6. Kelley R. F.,
    7. Randolph T. W.
    Tween Protects Recombinant Human Growth Hormone against Agitation-Induced Damage via Hydrophobic Interactions. J. Pharm. Sci. 1998, 87 (12), 1554–1559.
    OpenUrlCrossRefPubMedWeb of Science
  41. 41.↵
    1. Roberts C. J.
    Therapeutic Protein Aggregation: Mechanisms, Design, and Control. Trends Biotechnol. 2014, 32 (7), 372–380.
    OpenUrlCrossRefPubMed
  42. 42.↵
    1. Hermeling S.,
    2. Crommelin D. J. A.,
    3. Schellekens H.,
    4. Jiskoot W.
    Structure-Immunogenicity Relationships of Therapeutic Proteins. Pharm. Res. 2004, 21 (6), 897–903.
    OpenUrlCrossRefPubMedWeb of Science
  43. 43.↵
    1. Rosenberg A. S.
    Effects of Protein Aggregates: An Immunologic Perspective. AAPS J. 2006, 8 (3), E501–507.
    OpenUrlCrossRefPubMedWeb of Science
  44. 44.↵
    1. Joubert M. K.,
    2. Hokom M.,
    3. Eakin C.,
    4. Zhou L.,
    5. Deshpande M.,
    6. Baker M. P.,
    7. Goletz T. J.,
    8. Kerwin B. A.,
    9. Chirmule N.,
    10. Narhi L. O.,
    11. Jawa V.
    Highly Aggregated Antibody Therapeutics Can Enhance the in Vitro Innate and Late-Stage T-Cell Immune Responses. J. Biol. Chem. 2012, 287 (30), 25266–25279.
    OpenUrlAbstract/FREE Full Text
  45. 45.↵
    1. Moussa E. M.,
    2. Panchal J. P.,
    3. Moorthy B. S.,
    4. Blum J. S.,
    5. Joubert M. K.,
    6. Narhi L. O.,
    7. Topp E. M.
    Immunogenicity of Therapeutic Protein Aggregates. J. Pharm. Sci. 2016, 105 (2), 417–430.
    OpenUrl
  46. 46.↵
    1. Markovic I.
    Evaluation of Safety and Quality Impact of Extractable and Leachable Substances in Therapeutic Biologic Protein Products: A Risk-Based Perspective. Expert Opin. Drug Saf. 2007, 6 (5), 487–491.
    OpenUrlCrossRefPubMedWeb of Science
  47. 47.↵
    1. Luo Q.,
    2. Joubert M. K.,
    3. Stevenson R.,
    4. Ketchem R. R.,
    5. Narhi L. O.,
    6. Wypych J.
    Chemical Modifications in Therapeutic Protein Aggregates Generated under Different Stress Conditions. J. Biol. Chem. 2011, 286 (28), 25134–25144.
    OpenUrlAbstract/FREE Full Text
  48. 48.↵
    1. Men L.,
    2. Wang Y.
    The Oxidation of Yeast Alcohol Dehydrogenase-1 by Hydrogen Peroxide in Vitro. J. Proteome Res. 2007, 6 (1), 216–225.
    OpenUrlCrossRefPubMed
  49. 49.↵
    1. Pan H.,
    2. Chen K.,
    3. Chu L.,
    4. Kinderman F.,
    5. Apostol I.,
    6. Huang G.
    Methionine Oxidation in Human IgG2 Fc Decreases Binding Affinities to Protein A and FcRn. Protein Sci. 2009, 18 (2), 424–433.
    OpenUrlCrossRefPubMedWeb of Science
  50. 50.↵
    1. Finley E. L.,
    2. Dillon J.,
    3. Crouch R. K.,
    4. Schey K. L.
    Identification of Tryptophan Oxidation Products in Bovine α‐Crystallin. Protein Sci. 1998, 7 (11), 2391–2397.
    OpenUrlCrossRefPubMedWeb of Science
  51. 51.↵
    1. Schöneich C.
    Mechanisms of Metal-Catalyzed Oxidation of Histidine to 2-Oxo-Histidine in Peptides and Proteins. J. Pharm. Biomed. Anal. 2000, 21 (6), 1093–1097.
    OpenUrlCrossRefPubMedWeb of Science
  52. 52.↵
    1. Ji J. A.,
    2. Zhang B.,
    3. Cheng W.,
    4. Wang Y. J.
    Methionine, Tryptophan, and Histidine Oxidation in a Model Protein, PTH: Mechanisms and Stabilization. J. Pharm. Sci. 2009, 98 (12), 4485–4500.
    OpenUrlCrossRefPubMed
  53. 53.↵
    1. Fang L.,
    2. Zhao C.
    Modeling the Permeation Rates of Organic Migrants through a Fluoropolymer Film. PDA J. Pharm. Sci. Technol. 2019, 73 (1), 70–82.
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 75 (3)
PDA Journal of Pharmaceutical Science and Technology
Vol. 75, Issue 3
May/June 2021
  • Table of Contents
  • Index by Author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
An Investigation to Examine the Effect of the Elastomeric Surface Treatment on Protein Stability
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
8 + 10 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
An Investigation to Examine the Effect of the Elastomeric Surface Treatment on Protein Stability
Ranjana Singh, Lloyd Waxman, Liang Fang, Cathy Zhao
PDA Journal of Pharmaceutical Science and Technology May 2021, 75 (3) 230-244; DOI: 10.5731/pdajpst.2020.012120

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
An Investigation to Examine the Effect of the Elastomeric Surface Treatment on Protein Stability
Ranjana Singh, Lloyd Waxman, Liang Fang, Cathy Zhao
PDA Journal of Pharmaceutical Science and Technology May 2021, 75 (3) 230-244; DOI: 10.5731/pdajpst.2020.012120
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Methods
    • Results and Discussion
    • Summary
    • Conflict of Interest Declaration
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Analysis of Virus Clearance for Biotechnology Manufacturing Processes from Early to Late Phase Development
  • Coring and Fragmentation of Elastomeric Needle Shield in a Pre-Filled Syringe
  • Worldwide Regulatory Reliance: Results of an Executed Chemistry, Manufacturing, and Control Post-Approval Change Pilot
Show more Research

Similar Articles

Keywords

  • Drug delivery systems
  • Elastomers
  • Stoppers
  • Siliconization
  • Lamination
  • Fluoropolymer
  • Biotherapeutics
  • protein aggregation
  • Protein modification
  • Protein stability
  • ß-Lactoglobulin
  • Human serum albumin
  • mAb
  • Antibody
  • monoclonal antibody
  • Abatacept
  • Adalimumab
  • Immunoglobulin

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire