Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleResearch

Physicochemical Excipient-Container Interactions in Prefilled Syringes and Their Impact on Syringe Functionality

Liang Fang, Coralie AdÈle Richard, Galen Huaiqiu Shi, Xia Dong, Marissa Rase and Tingting Wang
PDA Journal of Pharmaceutical Science and Technology July 2021, 75 (4) 317-331; DOI: https://doi.org/10.5731/pdajpst.2020.012278
Liang Fang
1West Pharmaceutical Services, Inc., Exton, PA; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Coralie AdÈle Richard
2Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Galen Huaiqiu Shi
2Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xia Dong
2Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marissa Rase
1West Pharmaceutical Services, Inc., Exton, PA; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tingting Wang
2Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: wang_tingting@lilly.com
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Shi G. H.,
    2. Gopalrathnam G.,
    3. Shinkle S. L.,
    4. Dong X.,
    5. Hofer J. D.,
    6. Jensen E. C.,
    7. Rajagopalan N.
    Impact of Drug Formulation Variables on Silicone Oil Structure and Functionality of Prefilled Syringe System. PDA J. Pharm. Sci. Technol. 2018, 72 (1), 50–61.
    OpenUrlAbstract/FREE Full Text
  2. 2.↵
    1. Bittner B.,
    2. Richter W.,
    3. Schmidt J.
    Subcutaneous Administration of Biotherapeutics: An Overview of Current Challenges and Opportunities. BioDrugs 2018, 32 (5), 425–440.
    OpenUrl
  3. 3.↵
    1. Anderson K. C.,
    2. Landgren O.,
    3. Arend R. C.,
    4. Chou J.,
    5. Jacobs I. A.
    Humanistic and Economic Impact of Subcutaneous versus Intravenous Administration of Oncology Biologics. Future Oncol. 2019, 15 (28), 3267–3281.
    OpenUrl
  4. 4.↵
    1. Shire S. J.,
    2. Shahrokh Z.,
    3. Liu J.
    Challenges in the Development of High Protein Concentration Formulations. J. Pharm. Sci. 2004, 93 (6), 1390–1402.
    OpenUrlCrossRefPubMedWeb of Science
  5. 5.↵
    1. Dounce S. M.
    The Changing Paradigm in Primary Packaging of Therapeutic Proteins. Pharm. Commerce [Online] 2017. https://pharmaceuticalcommerce.com/manufacturing-and-packaging/changing-paradigm-primary-packaging-therapeutic-proteins/ (accessed Nov 10, 2020)
  6. 6.↵
    1. Schoenknecht T.,
    2. Romacker M.
    Prefilled Syringes: Why New Developments Are Important in Injectable Delivery Today. In Prefilled Syringes: Innovations that Meet the Growing Demand; ONDrugDelivery Ltd: East Sussex, UK, 2005; pp 9–11.
  7. 7.↵
    1. Overcashier D. E.,
    2. Chan E. K.,
    3. Hsu C. C.
    Technical Considerations in the Development of Prefilled Syringes for Protein Products. Am. Pharm. Rev. 2004, 9 (7), 77–83.
    OpenUrl
  8. 8.↵
    1. Bee J. S.,
    2. Frey V. V.,
    3. Javed U.,
    4. Chung J.,
    5. Corcoran M. L.,
    6. Roussel P. S.,
    7. Krause S. O.,
    8. Cash P. W.,
    9. Bishop S. M.,
    10. Dimitrova M. N.
    Characterization of the Initial Level and Migration of Silicone Oil Lubricant in Empty Prefilled Syringes for Biologics Using Infrared Spectroscopy. PDA J. Pharm. Sci. Technol. 2014, 68 (5), 494–503.
    OpenUrlAbstract/FREE Full Text
  9. 9.↵
    1. Dixit N.,
    2. Maloney K. M.,
    3. Kalonia D. S.
    Effect of Processing Parameters on the Physical Stability of Silicone Coatings. AAPS PharmSciTech 2012, 13 (4), 1116–1119. Dec,
    OpenUrlPubMed
  10. 10.↵
    1. Bee J. S.,
    2. Randolph T. W.,
    3. Carpenter J. F.,
    4. Bishop S. M.,
    5. Dimitrova M. N.
    Effects of Surfaces and Leachables on the Stability of Biopharmaceuticals. J. Pharm. Sci. 2011, 100 (10), 4158–4170.
    OpenUrl
  11. 11.↵
    1. Gerhardt A.,
    2. Mcgraw N. R.,
    3. Schwartz D. K.,
    4. Bee J. S.,
    5. Carpenter J. F.,
    6. Randolph T. W.
    Protein Aggregation and Particle Formation in Prefilled Glass Syringes. J. Pharm. Sci. 2014, 103 (6), 1601–1612.
    OpenUrl
  12. 12.↵
    1. Mehta S. B.,
    2. Lewus R.,
    3. Bee J. S.,
    4. Randolph T. W.,
    5. Carpenter J. F.
    Gelation of a Monoclonal Antibody at the Silicone Oil–Water Interface and Subsequent Rupture of the Interfacial Gel Results in Aggregation and Particle Formation. J. Pharm. Sci. 2015, 104 (4), 1282–1290.
    OpenUrl
  13. 13.↵
    1. Richard C. A.,
    2. Wang T.,
    3. Clark S. L.
    Using First Principles to Link Silicone Oil/Formulation Interfacial Tension with Syringe Functionality in Pre-Filled Syringes Systems. J. Pharm. Sci. 2020, 109 (10), 3006–3012.
    OpenUrl
  14. 14.↵
    1. Wang T.,
    2. Richard C. A.,
    3. Dong X.,
    4. Shi G. H.
    Impact of Surfactants on the Functionality of Prefilled Syringes. J. Pharm. Sci. 2020, 109 (11), 3413–3422.
    OpenUrl
  15. 15.↵
    Hansen Solubility Parameters—The Double Sphere. https://www.hansen-solubility.com/HSP-examples/double-sphere.php (accessed May 15, 2020).
  16. 16.↵
    1. Hansen C. M.
    Hansen Solubility Parameters: A User’s Handbook, 2nd ed.; CRC Press/Taylor & Francis Group: Boca Raton, FL, 2007; p 6.
  17. 17.↵
    HSPiP Software and 10K Chemical Database. Version 5.0.04. https://www.hansen-solubility.com/HSPiP (accessed May 15, 2020)
  18. 18.↵
    1. Abbott S.,
    2. Hansen C. M.,
    3. Yamamoto H.,
    4. Valpey R. S. III.
    , Insoluble Solubility Parameters (HSP for Pigment Surfaces). In Hansen Solubility Parameters in Practice, 5th ed.; Hansen-Solubility.com; p 72. https://pirika.com/ENG/HSP/E-Book/Chap10.html.
  19. 19.↵
    1. Gopalrathnam G.,
    2. Sharma A. N.,
    3. Dodd S. W.,
    4. Huang L.
    Impact of Stainless-Steel Exposure on the Oxidation of Polysorbate 80 in Histidine Placebo and Active Monoclonal Antibody Formulation. PDA J. Pharm. Sci. Technol. 2018, 72 (2), 163–175.
    OpenUrlAbstract/FREE Full Text
  20. 20.↵
    1. Chung H. H.,
    2. Zhou C.,
    3. Khor H. K.,
    4. Qiu J.
    Direct Determination of Residual Pluronic F-68 in in-Process Samples from Monoclonal Antibody Preparations by High Performance Liquid. J. Chromatogr. A 2011, 1218 (15), 2106–2113.
    OpenUrlPubMed
  21. 21.↵
    1. Fang L.,
    2. Shi G. H.,
    3. Richard C. A.,
    4. Dong X.,
    5. Thomas J. C.,
    6. Victor M. C.,
    7. Wang T.,
    8. Shinkle S.,
    9. Zhao C.
    Mechanisms of Drug Formulation Impact on Prefilled Syringe Functionality and Autoinjector Performance. PDA J Pharm Sci Technol, 2020, 74 (6), 674–687.
    OpenUrlAbstract/FREE Full Text
  22. 22.↵
    1. Poullain-Termeau S.,
    2. Crauste-Manciet S.,
    3. Brossard D.,
    4. Muhamed S.,
    5. Nicolaos G.,
    6. Farinotti R.,
    7. Barthélémy C.,
    8. Robert H.,
    9. Odou P.
    Effect of Oil-in-Water Submicron Emulsion Surface Charge on Oral Absorption of a Poorly Water-Soluble Drug in Rats. Drug Delivery 2008, 15 (8), 503–514.
    OpenUrlPubMed
  23. 23.↵
    1. Kishore R. S.,
    2. Pappenberger A.,
    3. Dauphin I. B.,
    4. Ross A.,
    5. Buergi B.,
    6. Staempfli A.,
    7. Mahler H. C.
    Degradation of Polysorbates 20 and 80: Studies on Thermal Autoxidation and Hydrolysis. J. Pharm. Sci. 2011, 100 (2), 721–731
    OpenUrlPubMed
  24. 24.↵
    1. Borisov O. V.,
    2. Ji J. A.,
    3. Wang Y. J.
    Oxidative Degradation of Polysorbate Surfactants Studied by Liquid Chromatography-Mass Spectrometry. J. Pharm. Sci. 2015, 104 (3), 1005–1018.
    OpenUrlPubMed
  25. 25.↵
    1. Kranz W.,
    2. Wuchner K.,
    3. Corradini E.,
    4. Berger M.,
    5. Hawe A.
    Factors Influencing Polysorbate's Sensitivity against Enzymatic Hydrolysis and Oxidative Degradation. J. Pharm. Sci. 2019, 108 (6), 2022–2032.
    OpenUrl
  26. 26.↵
    1. Doyle Drbohlav L. M.,
    2. Sharma A. N.,
    3. Gopalrathnam G.,
    4. Huang L.,
    5. Bradley S.
    A Mechanistic Understanding of Polysorbate 80 Oxidation in Histidine and Citrate Buffer Systems—Part 2. PDA J. Pharm. Sci. Technol. 2019, 73 (4), 320–330.
    OpenUrlAbstract/FREE Full Text
  27. 27.↵
    1. Larson N. R.,
    2. Wei Y.,
    3. Prajapati I.,
    4. Chakraborty A.,
    5. Peters B.,
    6. Kalonia C.,
    7. Hudak S.,
    8. Choudhary S.,
    9. Esfandiary R.,
    10. Dhar P.,
    11. Schöneich C.,
    12. Middaugh C. R.
    Comparison of Polysorbate 80 Hydrolysis and Oxidation on the Aggregation of a Monoclonal Antibody. J. Pharm. Sci. 2020, 109 (1), 633–639.
    OpenUrl
  28. 28.↵
    1. Wang T.,
    2. Markham A.,
    3. Thomas S. J.,
    4. Wang N.,
    5. Huang L.,
    6. Clemens M.,
    7. Rajagopalan N.
    Solution Stability of Poloxamer 188 under Stress Conditions. J Pharm. Sci 2019, 108 (3), 1264–1271.
    OpenUrl
  29. 29.↵
    1. Labrenz S. R.
    Ester Hydrolysis of Polysorbate 80 in mAb Drug Product: Evidence in Support of the Hypothesized Risk after the Observation of Visible Particulate in mAb Formulations. J. Pharm. Sci. 2014, 103 (8), 2268–2277.
    OpenUrlPubMed
  30. 30.↵
    1. McShan A. C.,
    2. Kei P.,
    3. Ji J. A.,
    4. Kim D. C.,
    5. Wang Y. J.
    Hydrolysis of Polysorbate 20 and 80 by a Range of Carboxylester Hydrolases. PDA J. Pharm. Sci. Technol. 2016, 70 (4), 332–345.
    OpenUrlAbstract/FREE Full Text
  31. 31.↵
    1. Hall T.,
    2. Sandefur S. L.,
    3. Frye C. C.,
    4. Tuley T. L.,
    5. Huang L.
    Polysorbates 20 and 80 Degradation by Group XV Lysosomal Phospholipase A2 Isomer X1 in Monoclonal Antibody Formulations. J. Pharm. Sci. 2016, 105 (5), 1633–1642.
    OpenUrl
  32. 32.↵
    1. Dixit N.,
    2. Salamat-Miller N.,
    3. Salinas P. A.,
    4. Taylor K. D.,
    5. Basu S. K.
    Residual Host Cell Protein Promotes Polysorbate 20 Degradation in a Sulfatase Drug Product Leading to Free Fatty Acid Particles. J. Pharm. Sci. 2016, 105 (5), 1657–1666.
    OpenUrl
  33. 33.
    1. Tomlinson A.,
    2. Demeule B.,
    3. Lin B.,
    4. Yadav S.
    Polysorbate 20 Degradation in Biopharmaceutical Formulations: Quantification of Free Fatty Acids, Characterization of Particulates, and Insights into the Degradation Mechanism. Mol. Pharmaceutics 2015, 12 (11), 3805–3815.
    OpenUrl
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 75 (4)
PDA Journal of Pharmaceutical Science and Technology
Vol. 75, Issue 4
July/August 2021
  • Table of Contents
  • Index by Author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Physicochemical Excipient-Container Interactions in Prefilled Syringes and Their Impact on Syringe Functionality
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
10 + 1 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Physicochemical Excipient-Container Interactions in Prefilled Syringes and Their Impact on Syringe Functionality
Liang Fang, Coralie AdÈle Richard, Galen Huaiqiu Shi, Xia Dong, Marissa Rase, Tingting Wang
PDA Journal of Pharmaceutical Science and Technology Jul 2021, 75 (4) 317-331; DOI: 10.5731/pdajpst.2020.012278

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Physicochemical Excipient-Container Interactions in Prefilled Syringes and Their Impact on Syringe Functionality
Liang Fang, Coralie AdÈle Richard, Galen Huaiqiu Shi, Xia Dong, Marissa Rase, Tingting Wang
PDA Journal of Pharmaceutical Science and Technology Jul 2021, 75 (4) 317-331; DOI: 10.5731/pdajpst.2020.012278
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results and Discussion
    • Conclusions
    • Conflict of Interest Declaration
    • Acknowledgements
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Container Closure Integrity of Vial Primary Packaging Systems under Frozen Storage Conditions: A Case Study
  • Advances in Large Volume Subcutaneous Injections: A Pilot Tolerability Study of an Innovative Needle-Free Injection Platform
  • Quantification and Stability Impact Assessment of Drop Stresses in Biologic Drug Products
Show more Research

Similar Articles

Keywords

  • Prefilled syringe
  • Autoinjector
  • Glide force
  • Silicone oil
  • Surfactant
  • Polysorbate
  • Poloxamer
  • Hansen solubility parameters

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2023 PDA Journal of Pharmaceutical Science and Technology ISSN: 1079-7440

Powered by HighWire