Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Article CommentaryCommentary

Risk-Based Selection of Environmental Classifications for Biopharmaceutical Operations

Nick Bevan, Tim Corbidge, David Estape, Lars Hovmand Lyster and Jorgen Magnus
PDA Journal of Pharmaceutical Science and Technology July 2021, 75 (4) 374-390; DOI: https://doi.org/10.5731/pdajpst.2019.010660
Nick Bevan
1Alexion Pharma International Operations UC, Blanchardstown, Dublin, Ireland;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tim Corbidge
2BioPhorum, London, UK;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David Estape
3CRB GmbH, Basel, Switzerland;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: david.estape@crbgroup.com
Lars Hovmand Lyster
4Novo Nordisk, Bagsvaerd, Denmark; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jorgen Magnus
5Bayer Wuppertal, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

This article details a risk-based methodology designed to assign environmental classifications to the different operations in biopharmaceutical facilities manufacturing non-sterile (low bioburden) drug substance. Generally, environmental conditions for active pharmaceutical ingredient manufacture are established based on previous experiences or expectations or on extrapolated interpretations of current good manufacturing practices guidelines. Improvements in equipment design and operation, especially the use of closed systems, allow certain process steps to take place in controlled environment areas rather than in classified clean rooms. However, the design of facilities has not developed to reflect these technological advancements. The result is that facility designs are more complex with multiple environmental classifications, resulting in far higher capital and operational costs than necessary given the current technology and understanding. The authors propose a formal risk assessment-based methodology that is applicable in the early design phase of new facilities and facilitates the fast selection of the environmental conditions required for the different process steps. The risk assessment describes the risk to product quality or patient safety from environmental contamination, and this is expressed in terms of impact, probability, and detectability. The assessment considers growth potential in terms of time, nutrients, and temperature; bioburden limit; level of closure of the system; and the ability of the process to detect contamination to assign an environmental classification. Because closure is a key factor in the methodology, the authors propose a practical definition of closed systems, building on existing International Society for Pharmaceutical Engineering guidance. A fundamental of the assessment is that closed system operations only require controlled not classified environments, and any increase in classification does nothing further to protect the product. Results of the assessment are discussed in relation to a variety of process steps in different operating scenarios, to demonstrate how the assessment is applied. The methodology strongly supports the implementation of closed systems and demonstrates the limited need for classified areas. With fewer classified rooms, companies can reduce the complexity of facility layout and save costs without compromising patient safety or product quality.

  • Risk-based
  • Closed systems
  • Closed process
  • Room classification
  • Environmental classification
  • Biopharmaceuticals
  • Low bioburden
  • Drug substance manufacture
  • Facility design
  • © PDA, Inc. 2021
View Full Text

PDA members receive access to all articles published in the current year and previous volume year. Institutional subscribers received access to all content. Log in below to receive access to this article if you are either of these.  

If you are neither or you are a PDA member trying to access an article outside of your membership license, then you must purchase access to this article (below). If you do not have a username or password for JPST, you will be required to create an account prior to purchasing. 

Full issue PDFs are for PDA members only.

Note to pda.org users

The PDA and PDA bookstore websites (www.pda.org and www.pda.org/bookstore) are separate websites from the PDA JPST website. When you first join PDA, your initial UserID and Password are sent to HighWirePress to create your PDA JPST account. Subsequent UserrID and Password changes required at the PDA websites will not pass on to PDA JPST and vice versa. If you forget your PDA JPST UserID and/or Password, you can request help to retrieve UserID and reset Password below.

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

patientACCESS

patientACCESS - Patients desiring access to articles

Full issue PDFs are for PDA members only. You can join PDA at www.pda.org. 

PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 75 (4)
PDA Journal of Pharmaceutical Science and Technology
Vol. 75, Issue 4
July/August 2021
  • Table of Contents
  • Index by Author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Risk-Based Selection of Environmental Classifications for Biopharmaceutical Operations
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
10 + 4 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Risk-Based Selection of Environmental Classifications for Biopharmaceutical Operations
Nick Bevan, Tim Corbidge, David Estape, Lars Hovmand Lyster, Jorgen Magnus
PDA Journal of Pharmaceutical Science and Technology Jul 2021, 75 (4) 374-390; DOI: 10.5731/pdajpst.2019.010660

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Risk-Based Selection of Environmental Classifications for Biopharmaceutical Operations
Nick Bevan, Tim Corbidge, David Estape, Lars Hovmand Lyster, Jorgen Magnus
PDA Journal of Pharmaceutical Science and Technology Jul 2021, 75 (4) 374-390; DOI: 10.5731/pdajpst.2019.010660
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • 1. Introduction
    • 2. Practical Definition of the Terms Closed, Functionally Closed, Briefly Exposed, and Open Systems
    • 3. Methodology Scope
    • 4. Building a Model to Determine the Environmental Requirements for a Given Process Step
    • 5. Risk-Based Approach to Assigning a Clean room
    • 6. Assigning the Environmental Classification Based on the Risk Assessment
    • 7. Conclusion
    • Disclaimer
    • Conflict of Interest Declaration
    • Appendix 1: Growth Potential
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Challenges and Solutions to Manufacturing of Low-Viscosity, Ultra-High Concentration IgG1 Drug Products: From Late Downstream Process to Final Fill Finish Processing
  • Retrospective Evaluation of Cycled Resin in Viral Clearance Studies - A Multiple Company Collaboration - Post ICH Q5A(R2) Review
  • Addressing Medical Device Extractables and Leachables via Non-Target Analysis (NTA); The Analytical Evaluation Threshold (AET) and Quantitation
Show more Commentary

Similar Articles

Keywords

  • Risk-based
  • Closed systems
  • Closed process
  • Room classification
  • Environmental classification
  • Biopharmaceuticals
  • Low bioburden
  • Drug substance manufacture
  • Facility design

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire