Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleResearch

Evaluation of a Novel Prefilled Syringe Concept for Ophthalmic Applications: A Formative Human Factors Study

Chris Franzese, Katsuyuki Takeuchi, Hayley Carabello, Colby Thomas, Koji Nakamura, Adam Kalbermatten, Erika Bajars and Marty Coyne
PDA Journal of Pharmaceutical Science and Technology January 2022, 76 (1) 19-33; DOI: https://doi.org/10.5731/pdajpst.2019.010835
Chris Franzese
1Matchstick LLC, 715 Main Street, Boonton, NJ 07005; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: chris@matchstickllc.com
Katsuyuki Takeuchi
2Terumo Pharmaceutical Solutions, 265 Davidson Ave, Somerset, NJ 08873
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hayley Carabello
1Matchstick LLC, 715 Main Street, Boonton, NJ 07005; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Colby Thomas
1Matchstick LLC, 715 Main Street, Boonton, NJ 07005; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Koji Nakamura
2Terumo Pharmaceutical Solutions, 265 Davidson Ave, Somerset, NJ 08873
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Adam Kalbermatten
2Terumo Pharmaceutical Solutions, 265 Davidson Ave, Somerset, NJ 08873
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Erika Bajars
1Matchstick LLC, 715 Main Street, Boonton, NJ 07005; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marty Coyne
1Matchstick LLC, 715 Main Street, Boonton, NJ 07005; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Freund K. B.,
    2. Haller J. A.,
    3. Jumper J. M.,
    4. Liebmann J. M.,
    5. McCannel C. A.,
    6. Mieler W. F.,
    7. Ta C. N.,
    8. Williams G. A.
    1. Avery R. L.,
    2. Bakri S. J.,
    3. Blumenkranz M. S.,
    4. Brucker A. J.,
    5. Cunningham E. T.,
    6. D'Amico D. J.,
    7. Dugel P. U.,
    8. Flynn H. W.
    Jr; Freund K. B., Haller J. A., Jumper J. M., Liebmann J. M., McCannel C. A., Mieler W. F., Ta C. N., Williams G. A. Intravitreal Injection Technique and Monitoring: Updated Guidelines of an Expert Panel. Retina 2014, 34 (Supplement 12), S1–S18.
    OpenUrl
  2. 2.↵
    1. Grzybowski A.,
    2. Told R.,
    3. Sacu S.,
    4. Bandello F.,
    5. Moisseiev E.,
    6. Loewenstein A.,
    7. Schmidt-Erfurth U
    , on behalf of the Euretina Board. 2018 Update on Intravitreal Injections: Euretina Expert Consensus Recommendations. Ophthalmologica 2018, 239 (4), 181–193.
    OpenUrlPubMed
  3. 3.↵
    1. Hartman R. R.,
    2. Kompella U. B.
    Intravitreal, Subretinal, and Suprachoroidal Injections: Evolution of Microneedles for Drug Delivery. J. Ocul. Pharmacol. Ther. 2018, 34 (1-2), 141–153.
    OpenUrl
  4. 4.↵
    1. Shikari H.,
    2. Samant P.
    Intravitreal Injections: A Review of Pharmacological Agents and Techniques. J. Clin. Ophthalmol. Res. 2016, 4 (1), 51–59.
    OpenUrl
  5. 5.↵
    1. Stewart M. W.
    The Expanding Role of Vascular Endothelial Growth Factor Inhibitors in Ophthalmology. Mayo Clin. Proc. 2012, 87 (1), 77–88.
    OpenUrlCrossRefPubMedWeb of Science
  6. 6.↵
    1. Mathalone N.,
    2. Arodi-Golan A.,
    3. Sar S.,
    4. Wolfson Y.,
    5. Shalem M.,
    6. Lavi I.,
    7. Geyer O.
    Sustained Elevation of Intraocular Pressure after Intravitreal Injections of Bevacizumab in Eyes with Neovascular Age-Related Macular Degeneration. Graefe’s. Arch. Clin. Exp. Ophthalmol. 2012, 250 (10), 1435–1440.
    OpenUrlCrossRefPubMed
  7. 7.↵
    1. Ghasemi Falavarjani K.,
    2. Nguyen Q. D.
    Adverse Events and Complications Associated with Intravitreal Injection of anti-VEGF Agents: A Review of Literature. Eye 2013, 27 (7), 787–794.
    OpenUrlCrossRefPubMedWeb of Science
  8. 8.↵
    1. Baudin F.,
    2. Benzenine E.,
    3. Mariet A.-S.,
    4. Bron A. M.,
    5. Daien V.,
    6. Korobelnik J. F.,
    7. Quantin C.,
    8. Creuzot-Garcher C.
    Association of Acute Endophthalmitis with Intravitreal Injections of Corticosteroids or anti–Vascular Growth Factor Agents in a Nationwide Study in France. JAMA Ophthalmol. 2018, 136 (12), 1352–1358.
    OpenUrl
  9. 9.↵
    1. VanderBeek B. L.,
    2. Bonaffini S. G.,
    3. Ma L.
    Association of Compounded Bevacizumab with Postinjection Endophthalmitis. JAMA Ophthalmol. 2015, 133 (10), 1159–1164.
    OpenUrl
  10. 10.↵
    1. Sheyman A. T.,
    2. Cohen B. Z.,
    3. Friedman A. H.,
    4. Ackert J. M.
    An Outbreak of Fungal Endophthalmitis after Intravitreal Injection of Compounded Combined Bevacizumab and Triamcinolone. JAMA Ophthalmol. 2013, 131 (7), 864–869.
    OpenUrl
  11. 11.↵
    1. Edison L. S.,
    2. Dishman H. O.,
    3. Tobin-D’Angelo M. J.,
    4. Allen C. R.,
    5. Guh A. Y.,
    6. Drenzek C. L.
    Endophthalmitis Outbreak Associated with Repackaged Bevacizumab. Emerging Infect. Dis. 2015, 21 (1), 171–173.
    OpenUrl
  12. 12.↵
    1. Goldberg R. A.,
    2. Shah C. P.,
    3. Wiegand T. W.,
    4. Heier J. S.
    Noninfectious Inflammation after Intravitreal Injection of Aflibercept: Clinical Characteristics and Visual Outcomes. Am. J. Ophthalmol. 2014, 158 (4), 733–737.e1.
    OpenUrl
  13. 13.↵
    1. Freund K. B.,
    2. Laud K.,
    3. Eandi C. M.,
    4. Spaide R. F.
    Silicone Oil Droplets following Intravitreal Injection. Retina 2006, 26 (6), 701–703.
    OpenUrlCrossRefPubMedWeb of Science
  14. 14.↵
    1. Avery R. L.,
    2. Castellarin A. A.,
    3. Dhoot D. S.,
    4. Pieramici D. J.,
    5. Nasir M. A.,
    6. Steinle N. C.,
    7. Avery L. P.,
    8. Gordon G. M.
    Large Silicone Droplets after Intravitreal Bevacizumab (Avastin). Retin. Cases Brief Rep. 2019, 13 (2), 130–134.
    OpenUrl
  15. 15.↵
    1. Bakri S. J.,
    2. Ekdawi N. S.
    Intravitreal Silicone Oil Droplets after Intravitreal Drug Injections. Retina 2008, 28 (7), 996–1001.
    OpenUrlCrossRefPubMedWeb of Science
  16. 16.↵
    1. Khurana R. N.,
    2. Chang L. K.,
    3. Porco T. C.
    Incidence of Presumed Silicone Oil Droplets in the Vitreous Cavity after Intravitreal Bevacizumab Injection with Insulin Syringes. JAMA Ophthalmol. 2017, 135 (7), 800–803.
    OpenUrl
  17. 17.↵
    1. Liu L.,
    2. Ammar D. A.,
    3. Ross L. A.,
    4. Mandava N.,
    5. Kahook M. Y.,
    6. Carpenter J. F.
    Silicone Oil Microdroplets and Protein Aggregates in Repackaged Bevacizumab and Ranibizumab: Effects of Long-Term Storage and Product Mishandling. Invest. Ophthalmol. Vis. Sci. 2011, 52 (2), 1023–1034.
    OpenUrlAbstract/FREE Full Text
  18. 18.↵
    1. Kocabora M. S.,
    2. Ozbilen K. T.,
    3. Serefoglu K.
    Intravitreal Silicone Oil Droplets following Pegaptanib Injection. Acta Ophthalmol. 2010, 88 (2), e44–e45.
    OpenUrlPubMed
  19. 19.↵
    1. Melo G. B.,
    2. Dias Junior C D. S.,
    3. Carvalho M. R.,
    4. Cardoso A. L.,
    5. Morais F. B.,
    6. Figueira A.,
    7. Lima Filho A.,
    8. Emerson G. G.,
    9. Maia M.
    Release of Silicone Oil Droplets from Syringes. Int. J. Retina Vitr. 2019, 5 (1),
  20. 20.↵
    1. Olea J. L.,
    2. Gómez-Resa M.,
    3. Cervera-Peris M. M.,
    4. Aragón J. A.
    Silicone Oil Droplets in Repackaged anti–Vascular Endothelial Growth Factors for Intravitreal Injections: In Search of the Main Source of Contamination. Eur. J. Ophthalmol. 2020, 30 (4), 774–779.
    OpenUrlPubMed
  21. 21.↵
    1. Schargus M.,
    2. Werner B. P.,
    3. Geerling G.,
    4. Winter G.
    Contamination of anti-VEGF Drugs for Intravitreal Injection: How Do Repackaging and Newly Developed Syringes Affect the Amount of Silicone Oil Droplets and Protein Aggregates?. Retina 2018, 38 (10), 2088–2095.
    OpenUrl
  22. 22.↵
    1. Tayyab H.,
    2. Khan A. A.,
    3. Sadiq M. A. A.,
    4. Jahangir S.,
    5. Sarwar S.
    Silicone Oil Droplets in Vitreous after Intravitreal Bevacizumab Injection. Pak. J. Ophthalmol. 2018 35 (2), 144–148.
    OpenUrl
  23. 23.↵
    1. Yu J. H.,
    2. Gallemore E.,
    3. Kim J. K.,
    4. Patel R.,
    5. Calderon J.,
    6. Gallemore R. P.
    Silicone Oil Droplets following Intravitreal Bevacizumab Injections. Am. J. Ophthalmol. Case Rep. 2018, 10, 142–144.
    OpenUrlPubMed
  24. 24.↵
    1. Scott I. U.,
    2. Oden N. L.,
    3. VanVeldhuisen P. C.,
    4. Ip M. S.,
    5. Blodi B. A.,
    6. Antoszyk A. N.
    SCORE Study Report 7: Incidence of Intravitreal Silicone Oil Droplets Associated with Staked-on vs Luer Cone Syringe Design. Am. J. Ophthalmol. 2009, 148 (5), 725–732.e7.
    OpenUrlCrossRefPubMedWeb of Science
  25. 25.↵
    1. Good T. J.,
    2. Kimura A. E.,
    3. Mandava N.,
    4. Kahook M. Y.
    Sustained Elevation of Intraocular Pressure after Intravitreal Injections of anti-VEGF Agents. Br. J. Ophthalmol. 2011, 95 (8), 1111–1114.
    OpenUrlAbstract/FREE Full Text
  26. 26.↵
    1. Antoszyk A. N.,
    2. Baker C.,
    3. Calzada J.,
    4. Cummings H.,
    5. So J.,
    6. Quezada-Ruiz C.,
    7. Haskova Z.
    Usability of the Ranibizumab 0.5 mg Prefilled Syringe: Human Factors Studies to Evaluate Critical Task Completion by Healthcare Professionals. PDA J. Pharm. Sci. Technol. 2018, 72 (4), 411–419.
    OpenUrlAbstract/FREE Full Text
  27. 27.↵
    1. Souied E.,
    2. Nghiem-Buffet S.,
    3. Leteneux C.,
    4. Bayer S.,
    5. Derveloy A.,
    6. Sagkriotis A.,
    7. Becker G.,
    8. Cohen S.-Y.
    Ranibizumab Prefilled Syringes: Benefits of Reduced Syringe Preparation Times and Less Complex Preparation Procedures. Eur. J. Ophthalmol. 2015, 25 (6), 529–534.
    OpenUrl
  28. 28.↵
    1. Subhi Y.,
    2. Kjer B.,
    3. Munch I. C.
    Prefilled Syringes for Intravitreal Injection Reduce Preparation Time. Dan. Med. J. 2016, 63 (4), A5214.
    OpenUrl
  29. 29.↵
    1. Michaud J.-E.,
    2. Sigg J.,
    3. Boado L.,
    4. Momm J.,
    5. Weber C.,
    6. Alete D.,
    7. Peregi E.,
    8. Picci M.
    Ranibizumab Pre-Filled Syringe Approved in the European Union: Innovation to Improve Dose Accuracy, Reduce Potential Infection Risk, and Offer More Efficient Treatment Administration. Invest. Ophthalmol. Visual Sci. 2014, 55 (13), 1949.
    OpenUrl
  30. 30.↵
    1. Storey P. P.,
    2. Tauqeer Z.,
    3. Yonekawa Y.,
    4. Todorich B.,
    5. Wolfe J. D.,
    6. Shah S. P.,
    7. Shah A. R.,
    8. Koto T.,
    9. Abbey A. M.,
    10. Morizane Y.,
    11. Sharma P.,
    12. Wood E. H.,
    13. Morizane-Hosokawa M.,
    14. Pendri P.,
    15. Pancholy M.,
    16. Harkey S.,
    17. Jeng-Miller K. W.,
    18. Obeid A.,
    19. Borkar D. S.,
    20. Chen E.,
    21. Williams P.,
    22. Okada A. A.,
    23. Inoue M.,
    24. Shiraga F.,
    25. Hirakata A.,
    26. Shah C. P.,
    27. Prenner J.,
    28. Garg S.
    The Impact of Prefilled Syringes on Endophthalmitis following Intravitreal Injection of Ranibizumab. Am. J. Ophthalmol. 2019, 199, 200–208.
    OpenUrl
  31. 31.↵
    1. Loewenstein I.,
    2. Goldstein M.,
    3. Moisseiev J.,
    4. Moisseiev E.
    Accuracy and Precision of Intravitreal Injections of Anti-Vascular Endothelial Growth Factor Agents in Real Life: What is Actually in the Syringe?. Retina 2019, 39 (7), 1385–1391.
    OpenUrl
  32. 32.↵
    1. Buerke B.,
    2. Puesken M.,
    3. Mellmann A.,
    4. Seifarth H.,
    5. Heindel W.,
    6. Wessling J.
    Microbiologic Contamination and Time Efficiency of Use of Automatic MDCT Injectors with Prefilled Syringes: Results of a Clinical Investigation. Am. J. Roentgenol. 2010, 194 (2), 299–303.
    OpenUrlCrossRefPubMed
  33. 33.↵
    1. Moisseiev E.,
    2. Rudell J.,
    3. Tieu E. V.,
    4. Yiu G.
    Effect of Syringe Design on the Accuracy and Precision of Intravitreal Injections of anti-VEGF Agents. Curr. Eye Res. 2017, 42 (7), 1059–1063.
    OpenUrl
  34. 34.↵
    1. Sassalos T. M.,
    2. Paulus Y. M.
    Prefilled Syringes for Intravitreal Drug Delivery. Clin. Ophthalmol. 2019, 13, 701–706.
    OpenUrl
  35. 35.↵
    1. Makwana S.,
    2. Basu B.,
    3. Makasana Y.,
    4. Dharamsi A.
    Prefilled Syringes: An Innovation in Parenteral Packaging. Int. J. Pharm. Invest. 2011, 1 (4), 200–206.
    OpenUrl
  36. 36.↵
    U.S. Food and Drug Administration, Guidance for Industry and Food and Drug Administration Staff: Applying Human Factors and Usability Engineering to Medical Devices. Center for Devices and Radiological Health: Rockville, MD, 2016.
  37. 37.↵
    LUCENTIS (ranibizumab). [package insert]. South San Francisco, CA; Genentech, Inc, 2018.
  38. 38.↵
    1. Sukgen E. A.,
    2. Gunay M.,
    3. Kocluk Y.
    Occurrence of Intraocular Air Bubbles during Intravitreal Injections for Retinopathy of Prematurity. Int. Ophthalmol. 2017, 37 (1), 215–219.
    OpenUrl
  39. 39.↵
    1. Lim W. S.,
    2. Sikandar M.,
    3. Jackson H.
    Air Entry into the Anterior Chamber Post Intravitreal Injection of Eylea. BMJ Case Reports. 2016, 2016, bcr2016216247.
    OpenUrl
  40. 40.↵
    1. Badkar A.,
    2. Wolf A.,
    3. Bohack L.,
    4. Kolhe P.
    Development of Biotechnology Products in Pre-Filled Syringes: Technical Considerations and Approaches. AAPS PharmSciTech 2011, 12 (2), 564–572.
    OpenUrlPubMed
  41. 41.↵
    1. Bee J. S.,
    2. Frey V. V.,
    3. Javed U.,
    4. Chung J.,
    5. Corcoran M. L.,
    6. Roussel P. S.,
    7. Krause S. O.,
    8. Cash P. W.,
    9. Bishop S. M.,
    10. Dimitrova M. N.
    Characterization of the Initial Level and Migration of Silicone Oil Lubricant in Empty Prefilled Syringes for Biologics Using Infrared Spectroscopy. PDA J. Pharm. Sci. Technol. 2014, 68 (5), 494–503.
    OpenUrlAbstract/FREE Full Text
  42. 42.↵
    1. Funke S.,
    2. Matilainen J.,
    3. Nalenz H.,
    4. Bechtold-Peters K.,
    5. Mahler H.-C.,
    6. Friess W.
    Silicone Migration from Baked-on Silicone Layers. Particle Characterization in Placebo and Protein Solutions. J. Pharm. Sci. 2016, 105 (12), 3520–3531.
    OpenUrl
  43. 43.↵
    1. Yoshino K.,
    2. Nakamura K.,
    3. Yamashita A.,
    4. Abe Y.,
    5. Iwasaki K.,
    6. Kanazawa Y.,
    7. Funatsu K.,
    8. Yoshimoto T.,
    9. Suzuki S.
    Functional Evaluation and Characterization of a Newly Developed Silicone Oil-Free Prefillable Syringe System. J. Pharm. Sci. 2014, 103 (5), 1520–1528.
    OpenUrlPubMed
  44. 44.↵
    1. Liebmann-Vinson A.
    Physics of Friction Applied to Medical Devices. In: Microstructure and Microtribology of Polymer Surfaces. Vol 741. ACS Symposium Series. American Chemical Society; 1999:474–494. doi:10.1021/bk-2000-0741.ch030.
  45. 45.↵
    1. Lanzetta P.,
    2. Holz F.,
    3. Monés J.,
    4. Querques G.,
    5. Stanga P.,
    6. Veritti D.,
    7. Barbone F.,
    8. Brusaferro S.,
    9. Isola M.
    Intravitreal Injections: A Healthcare Failure Modes and Effects Analysis. Ophthalmologica 2013, 230 (3), 151–164.
    OpenUrl
  46. 46.↵
    1. Shetty G.,
    2. Zeiss B.
    Microlitre Dosing with Prefillable Syringes—When Does a Device Make Sense? ONdrugDelivery Magazine 2019, (97), 28–31.
  47. 47.↵
    1. Krayukhina E.,
    2. Tsumoto K.,
    3. Uchiyama S.,
    4. Fukui K.
    Effects of Syringe Material and Silicone Oil Lubrication on the Stability of Pharmaceutical Proteins. J. Pharm. Sci. 2015, 104 (2), 527–535.
    OpenUrlPubMed
  48. 48.↵
    1. Foglia P.,
    2. Prete C. A.,
    3. Zanda M.
    An Inspection System for Pharmaceutical Glass Tubes. WSEAS Transactions on Systems 2015, 14, 123–136.
    OpenUrl
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 76 (1)
PDA Journal of Pharmaceutical Science and Technology
Vol. 76, Issue 1
January/February 2022
  • Table of Contents
  • Index by Author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Evaluation of a Novel Prefilled Syringe Concept for Ophthalmic Applications: A Formative Human Factors Study
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
18 + 2 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Evaluation of a Novel Prefilled Syringe Concept for Ophthalmic Applications: A Formative Human Factors Study
Chris Franzese, Katsuyuki Takeuchi, Hayley Carabello, Colby Thomas, Koji Nakamura, Adam Kalbermatten, Erika Bajars, Marty Coyne
PDA Journal of Pharmaceutical Science and Technology Jan 2022, 76 (1) 19-33; DOI: 10.5731/pdajpst.2019.010835

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Evaluation of a Novel Prefilled Syringe Concept for Ophthalmic Applications: A Formative Human Factors Study
Chris Franzese, Katsuyuki Takeuchi, Hayley Carabello, Colby Thomas, Koji Nakamura, Adam Kalbermatten, Erika Bajars, Marty Coyne
PDA Journal of Pharmaceutical Science and Technology Jan 2022, 76 (1) 19-33; DOI: 10.5731/pdajpst.2019.010835
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Methods
    • Results
    • Use Errors
    • Subjective Feedback
    • Discussion
    • Conclusion
    • Conflict of Interest Declaration
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Quantitative and Qualitative Evaluation of Microorganism Profile Identified in Bioburden Analysis in a Biopharmaceutical Facility in Brazil: Criteria for Classification and Management of Results
  • Evaluation of Extreme Depyrogenation Conditions on the Surface Hydrolytic Resistance of Glass Containers for Pharmaceutical Use
  • A Holistic Approach for Filling Volume Variability Evaluation and Control with Statistical Tool
Show more Research

Similar Articles

Keywords

  • Ophthalmology
  • Intravitreal injection
  • Drug delivery device
  • prefilled syringe
  • Human factors
  • Usability

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire