Skip to main content
  • Main menu
  • User menu
  • Search

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleResearch

Evaluation of a Novel Prefilled Syringe Concept for Ophthalmic Applications: A Formative Human Factors Study

Chris Franzese, Katsuyuki Takeuchi, Hayley Carabello, Colby Thomas, Koji Nakamura, Adam Kalbermatten, Erika Bajars and Marty Coyne
PDA Journal of Pharmaceutical Science and Technology January 2022, 76 (1) 19-33; DOI: https://doi.org/10.5731/pdajpst.2019.010835
Chris Franzese
1Matchstick LLC, 715 Main Street, Boonton, NJ 07005; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: chris@matchstickllc.com
Katsuyuki Takeuchi
2Terumo Pharmaceutical Solutions, 265 Davidson Ave, Somerset, NJ 08873
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hayley Carabello
1Matchstick LLC, 715 Main Street, Boonton, NJ 07005; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Colby Thomas
1Matchstick LLC, 715 Main Street, Boonton, NJ 07005; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Koji Nakamura
2Terumo Pharmaceutical Solutions, 265 Davidson Ave, Somerset, NJ 08873
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Adam Kalbermatten
2Terumo Pharmaceutical Solutions, 265 Davidson Ave, Somerset, NJ 08873
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Erika Bajars
1Matchstick LLC, 715 Main Street, Boonton, NJ 07005; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marty Coyne
1Matchstick LLC, 715 Main Street, Boonton, NJ 07005; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Freund K. B.,
    2. Haller J. A.,
    3. Jumper J. M.,
    4. Liebmann J. M.,
    5. McCannel C. A.,
    6. Mieler W. F.,
    7. Ta C. N.,
    8. Williams G. A.
    1. Avery R. L.,
    2. Bakri S. J.,
    3. Blumenkranz M. S.,
    4. Brucker A. J.,
    5. Cunningham E. T.,
    6. D'Amico D. J.,
    7. Dugel P. U.,
    8. Flynn H. W.
    Jr; Freund K. B., Haller J. A., Jumper J. M., Liebmann J. M., McCannel C. A., Mieler W. F., Ta C. N., Williams G. A. Intravitreal Injection Technique and Monitoring: Updated Guidelines of an Expert Panel. Retina 2014, 34 (Supplement 12), S1–S18.
    OpenUrlGoogle Scholar
  2. 2.↵
    1. Grzybowski A.,
    2. Told R.,
    3. Sacu S.,
    4. Bandello F.,
    5. Moisseiev E.,
    6. Loewenstein A.,
    7. Schmidt-Erfurth U
    , on behalf of the Euretina Board. 2018 Update on Intravitreal Injections: Euretina Expert Consensus Recommendations. Ophthalmologica 2018, 239 (4), 181–193.
    OpenUrlPubMedGoogle Scholar
  3. 3.↵
    1. Hartman R. R.,
    2. Kompella U. B.
    Intravitreal, Subretinal, and Suprachoroidal Injections: Evolution of Microneedles for Drug Delivery. J. Ocul. Pharmacol. Ther. 2018, 34 (1-2), 141–153.
    OpenUrlGoogle Scholar
  4. 4.↵
    1. Shikari H.,
    2. Samant P.
    Intravitreal Injections: A Review of Pharmacological Agents and Techniques. J. Clin. Ophthalmol. Res. 2016, 4 (1), 51–59.
    OpenUrlGoogle Scholar
  5. 5.↵
    1. Stewart M. W.
    The Expanding Role of Vascular Endothelial Growth Factor Inhibitors in Ophthalmology. Mayo Clin. Proc. 2012, 87 (1), 77–88.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  6. 6.↵
    1. Mathalone N.,
    2. Arodi-Golan A.,
    3. Sar S.,
    4. Wolfson Y.,
    5. Shalem M.,
    6. Lavi I.,
    7. Geyer O.
    Sustained Elevation of Intraocular Pressure after Intravitreal Injections of Bevacizumab in Eyes with Neovascular Age-Related Macular Degeneration. Graefe’s. Arch. Clin. Exp. Ophthalmol. 2012, 250 (10), 1435–1440.
    OpenUrlCrossRefPubMedGoogle Scholar
  7. 7.↵
    1. Ghasemi Falavarjani K.,
    2. Nguyen Q. D.
    Adverse Events and Complications Associated with Intravitreal Injection of anti-VEGF Agents: A Review of Literature. Eye 2013, 27 (7), 787–794.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  8. 8.↵
    1. Baudin F.,
    2. Benzenine E.,
    3. Mariet A.-S.,
    4. Bron A. M.,
    5. Daien V.,
    6. Korobelnik J. F.,
    7. Quantin C.,
    8. Creuzot-Garcher C.
    Association of Acute Endophthalmitis with Intravitreal Injections of Corticosteroids or anti–Vascular Growth Factor Agents in a Nationwide Study in France. JAMA Ophthalmol. 2018, 136 (12), 1352–1358.
    OpenUrlGoogle Scholar
  9. 9.↵
    1. VanderBeek B. L.,
    2. Bonaffini S. G.,
    3. Ma L.
    Association of Compounded Bevacizumab with Postinjection Endophthalmitis. JAMA Ophthalmol. 2015, 133 (10), 1159–1164.
    OpenUrlGoogle Scholar
  10. 10.↵
    1. Sheyman A. T.,
    2. Cohen B. Z.,
    3. Friedman A. H.,
    4. Ackert J. M.
    An Outbreak of Fungal Endophthalmitis after Intravitreal Injection of Compounded Combined Bevacizumab and Triamcinolone. JAMA Ophthalmol. 2013, 131 (7), 864–869.
    OpenUrlGoogle Scholar
  11. 11.↵
    1. Edison L. S.,
    2. Dishman H. O.,
    3. Tobin-D’Angelo M. J.,
    4. Allen C. R.,
    5. Guh A. Y.,
    6. Drenzek C. L.
    Endophthalmitis Outbreak Associated with Repackaged Bevacizumab. Emerging Infect. Dis. 2015, 21 (1), 171–173.
    OpenUrlGoogle Scholar
  12. 12.↵
    1. Goldberg R. A.,
    2. Shah C. P.,
    3. Wiegand T. W.,
    4. Heier J. S.
    Noninfectious Inflammation after Intravitreal Injection of Aflibercept: Clinical Characteristics and Visual Outcomes. Am. J. Ophthalmol. 2014, 158 (4), 733–737.e1.
    OpenUrlGoogle Scholar
  13. 13.↵
    1. Freund K. B.,
    2. Laud K.,
    3. Eandi C. M.,
    4. Spaide R. F.
    Silicone Oil Droplets following Intravitreal Injection. Retina 2006, 26 (6), 701–703.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  14. 14.↵
    1. Avery R. L.,
    2. Castellarin A. A.,
    3. Dhoot D. S.,
    4. Pieramici D. J.,
    5. Nasir M. A.,
    6. Steinle N. C.,
    7. Avery L. P.,
    8. Gordon G. M.
    Large Silicone Droplets after Intravitreal Bevacizumab (Avastin). Retin. Cases Brief Rep. 2019, 13 (2), 130–134.
    OpenUrlGoogle Scholar
  15. 15.↵
    1. Bakri S. J.,
    2. Ekdawi N. S.
    Intravitreal Silicone Oil Droplets after Intravitreal Drug Injections. Retina 2008, 28 (7), 996–1001.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  16. 16.↵
    1. Khurana R. N.,
    2. Chang L. K.,
    3. Porco T. C.
    Incidence of Presumed Silicone Oil Droplets in the Vitreous Cavity after Intravitreal Bevacizumab Injection with Insulin Syringes. JAMA Ophthalmol. 2017, 135 (7), 800–803.
    OpenUrlGoogle Scholar
  17. 17.↵
    1. Liu L.,
    2. Ammar D. A.,
    3. Ross L. A.,
    4. Mandava N.,
    5. Kahook M. Y.,
    6. Carpenter J. F.
    Silicone Oil Microdroplets and Protein Aggregates in Repackaged Bevacizumab and Ranibizumab: Effects of Long-Term Storage and Product Mishandling. Invest. Ophthalmol. Vis. Sci. 2011, 52 (2), 1023–1034.
    OpenUrlAbstract/FREE Full TextGoogle Scholar
  18. 18.↵
    1. Kocabora M. S.,
    2. Ozbilen K. T.,
    3. Serefoglu K.
    Intravitreal Silicone Oil Droplets following Pegaptanib Injection. Acta Ophthalmol. 2010, 88 (2), e44–e45.
    OpenUrlPubMedGoogle Scholar
  19. 19.↵
    1. Melo G. B.,
    2. Dias Junior C D. S.,
    3. Carvalho M. R.,
    4. Cardoso A. L.,
    5. Morais F. B.,
    6. Figueira A.,
    7. Lima Filho A.,
    8. Emerson G. G.,
    9. Maia M.
    Release of Silicone Oil Droplets from Syringes. Int. J. Retina Vitr. 2019, 5 (1),
    Google Scholar
  20. 20.↵
    1. Olea J. L.,
    2. Gómez-Resa M.,
    3. Cervera-Peris M. M.,
    4. Aragón J. A.
    Silicone Oil Droplets in Repackaged anti–Vascular Endothelial Growth Factors for Intravitreal Injections: In Search of the Main Source of Contamination. Eur. J. Ophthalmol. 2020, 30 (4), 774–779.
    OpenUrlPubMedGoogle Scholar
  21. 21.↵
    1. Schargus M.,
    2. Werner B. P.,
    3. Geerling G.,
    4. Winter G.
    Contamination of anti-VEGF Drugs for Intravitreal Injection: How Do Repackaging and Newly Developed Syringes Affect the Amount of Silicone Oil Droplets and Protein Aggregates?. Retina 2018, 38 (10), 2088–2095.
    OpenUrlGoogle Scholar
  22. 22.↵
    1. Tayyab H.,
    2. Khan A. A.,
    3. Sadiq M. A. A.,
    4. Jahangir S.,
    5. Sarwar S.
    Silicone Oil Droplets in Vitreous after Intravitreal Bevacizumab Injection. Pak. J. Ophthalmol. 2018 35 (2), 144–148.
    OpenUrlGoogle Scholar
  23. 23.↵
    1. Yu J. H.,
    2. Gallemore E.,
    3. Kim J. K.,
    4. Patel R.,
    5. Calderon J.,
    6. Gallemore R. P.
    Silicone Oil Droplets following Intravitreal Bevacizumab Injections. Am. J. Ophthalmol. Case Rep. 2018, 10, 142–144.
    OpenUrlPubMedGoogle Scholar
  24. 24.↵
    1. Scott I. U.,
    2. Oden N. L.,
    3. VanVeldhuisen P. C.,
    4. Ip M. S.,
    5. Blodi B. A.,
    6. Antoszyk A. N.
    SCORE Study Report 7: Incidence of Intravitreal Silicone Oil Droplets Associated with Staked-on vs Luer Cone Syringe Design. Am. J. Ophthalmol. 2009, 148 (5), 725–732.e7.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  25. 25.↵
    1. Good T. J.,
    2. Kimura A. E.,
    3. Mandava N.,
    4. Kahook M. Y.
    Sustained Elevation of Intraocular Pressure after Intravitreal Injections of anti-VEGF Agents. Br. J. Ophthalmol. 2011, 95 (8), 1111–1114.
    OpenUrlAbstract/FREE Full TextGoogle Scholar
  26. 26.↵
    1. Antoszyk A. N.,
    2. Baker C.,
    3. Calzada J.,
    4. Cummings H.,
    5. So J.,
    6. Quezada-Ruiz C.,
    7. Haskova Z.
    Usability of the Ranibizumab 0.5 mg Prefilled Syringe: Human Factors Studies to Evaluate Critical Task Completion by Healthcare Professionals. PDA J. Pharm. Sci. Technol. 2018, 72 (4), 411–419.
    OpenUrlAbstract/FREE Full TextGoogle Scholar
  27. 27.↵
    1. Souied E.,
    2. Nghiem-Buffet S.,
    3. Leteneux C.,
    4. Bayer S.,
    5. Derveloy A.,
    6. Sagkriotis A.,
    7. Becker G.,
    8. Cohen S.-Y.
    Ranibizumab Prefilled Syringes: Benefits of Reduced Syringe Preparation Times and Less Complex Preparation Procedures. Eur. J. Ophthalmol. 2015, 25 (6), 529–534.
    OpenUrlGoogle Scholar
  28. 28.↵
    1. Subhi Y.,
    2. Kjer B.,
    3. Munch I. C.
    Prefilled Syringes for Intravitreal Injection Reduce Preparation Time. Dan. Med. J. 2016, 63 (4), A5214.
    OpenUrlGoogle Scholar
  29. 29.↵
    1. Michaud J.-E.,
    2. Sigg J.,
    3. Boado L.,
    4. Momm J.,
    5. Weber C.,
    6. Alete D.,
    7. Peregi E.,
    8. Picci M.
    Ranibizumab Pre-Filled Syringe Approved in the European Union: Innovation to Improve Dose Accuracy, Reduce Potential Infection Risk, and Offer More Efficient Treatment Administration. Invest. Ophthalmol. Visual Sci. 2014, 55 (13), 1949.
    OpenUrlGoogle Scholar
  30. 30.↵
    1. Storey P. P.,
    2. Tauqeer Z.,
    3. Yonekawa Y.,
    4. Todorich B.,
    5. Wolfe J. D.,
    6. Shah S. P.,
    7. Shah A. R.,
    8. Koto T.,
    9. Abbey A. M.,
    10. Morizane Y.,
    11. Sharma P.,
    12. Wood E. H.,
    13. Morizane-Hosokawa M.,
    14. Pendri P.,
    15. Pancholy M.,
    16. Harkey S.,
    17. Jeng-Miller K. W.,
    18. Obeid A.,
    19. Borkar D. S.,
    20. Chen E.,
    21. Williams P.,
    22. Okada A. A.,
    23. Inoue M.,
    24. Shiraga F.,
    25. Hirakata A.,
    26. Shah C. P.,
    27. Prenner J.,
    28. Garg S.
    The Impact of Prefilled Syringes on Endophthalmitis following Intravitreal Injection of Ranibizumab. Am. J. Ophthalmol. 2019, 199, 200–208.
    OpenUrlGoogle Scholar
  31. 31.↵
    1. Loewenstein I.,
    2. Goldstein M.,
    3. Moisseiev J.,
    4. Moisseiev E.
    Accuracy and Precision of Intravitreal Injections of Anti-Vascular Endothelial Growth Factor Agents in Real Life: What is Actually in the Syringe?. Retina 2019, 39 (7), 1385–1391.
    OpenUrlGoogle Scholar
  32. 32.↵
    1. Buerke B.,
    2. Puesken M.,
    3. Mellmann A.,
    4. Seifarth H.,
    5. Heindel W.,
    6. Wessling J.
    Microbiologic Contamination and Time Efficiency of Use of Automatic MDCT Injectors with Prefilled Syringes: Results of a Clinical Investigation. Am. J. Roentgenol. 2010, 194 (2), 299–303.
    OpenUrlCrossRefPubMedGoogle Scholar
  33. 33.↵
    1. Moisseiev E.,
    2. Rudell J.,
    3. Tieu E. V.,
    4. Yiu G.
    Effect of Syringe Design on the Accuracy and Precision of Intravitreal Injections of anti-VEGF Agents. Curr. Eye Res. 2017, 42 (7), 1059–1063.
    OpenUrlGoogle Scholar
  34. 34.↵
    1. Sassalos T. M.,
    2. Paulus Y. M.
    Prefilled Syringes for Intravitreal Drug Delivery. Clin. Ophthalmol. 2019, 13, 701–706.
    OpenUrlGoogle Scholar
  35. 35.↵
    1. Makwana S.,
    2. Basu B.,
    3. Makasana Y.,
    4. Dharamsi A.
    Prefilled Syringes: An Innovation in Parenteral Packaging. Int. J. Pharm. Invest. 2011, 1 (4), 200–206.
    OpenUrlGoogle Scholar
  36. 36.↵
    U.S. Food and Drug Administration, Guidance for Industry and Food and Drug Administration Staff: Applying Human Factors and Usability Engineering to Medical Devices. Center for Devices and Radiological Health: Rockville, MD, 2016.
    Google Scholar
  37. 37.↵
    LUCENTIS (ranibizumab). [package insert]. South San Francisco, CA; Genentech, Inc, 2018.
    Google Scholar
  38. 38.↵
    1. Sukgen E. A.,
    2. Gunay M.,
    3. Kocluk Y.
    Occurrence of Intraocular Air Bubbles during Intravitreal Injections for Retinopathy of Prematurity. Int. Ophthalmol. 2017, 37 (1), 215–219.
    OpenUrlGoogle Scholar
  39. 39.↵
    1. Lim W. S.,
    2. Sikandar M.,
    3. Jackson H.
    Air Entry into the Anterior Chamber Post Intravitreal Injection of Eylea. BMJ Case Reports. 2016, 2016, bcr2016216247.
    OpenUrlGoogle Scholar
  40. 40.↵
    1. Badkar A.,
    2. Wolf A.,
    3. Bohack L.,
    4. Kolhe P.
    Development of Biotechnology Products in Pre-Filled Syringes: Technical Considerations and Approaches. AAPS PharmSciTech 2011, 12 (2), 564–572.
    OpenUrlPubMedGoogle Scholar
  41. 41.↵
    1. Bee J. S.,
    2. Frey V. V.,
    3. Javed U.,
    4. Chung J.,
    5. Corcoran M. L.,
    6. Roussel P. S.,
    7. Krause S. O.,
    8. Cash P. W.,
    9. Bishop S. M.,
    10. Dimitrova M. N.
    Characterization of the Initial Level and Migration of Silicone Oil Lubricant in Empty Prefilled Syringes for Biologics Using Infrared Spectroscopy. PDA J. Pharm. Sci. Technol. 2014, 68 (5), 494–503.
    OpenUrlAbstract/FREE Full TextGoogle Scholar
  42. 42.↵
    1. Funke S.,
    2. Matilainen J.,
    3. Nalenz H.,
    4. Bechtold-Peters K.,
    5. Mahler H.-C.,
    6. Friess W.
    Silicone Migration from Baked-on Silicone Layers. Particle Characterization in Placebo and Protein Solutions. J. Pharm. Sci. 2016, 105 (12), 3520–3531.
    OpenUrlGoogle Scholar
  43. 43.↵
    1. Yoshino K.,
    2. Nakamura K.,
    3. Yamashita A.,
    4. Abe Y.,
    5. Iwasaki K.,
    6. Kanazawa Y.,
    7. Funatsu K.,
    8. Yoshimoto T.,
    9. Suzuki S.
    Functional Evaluation and Characterization of a Newly Developed Silicone Oil-Free Prefillable Syringe System. J. Pharm. Sci. 2014, 103 (5), 1520–1528.
    OpenUrlPubMedGoogle Scholar
  44. 44.↵
    1. Liebmann-Vinson A.
    Physics of Friction Applied to Medical Devices. In: Microstructure and Microtribology of Polymer Surfaces. Vol 741. ACS Symposium Series. American Chemical Society; 1999:474–494. doi:10.1021/bk-2000-0741.ch030.
    Google Scholar
  45. 45.↵
    1. Lanzetta P.,
    2. Holz F.,
    3. Monés J.,
    4. Querques G.,
    5. Stanga P.,
    6. Veritti D.,
    7. Barbone F.,
    8. Brusaferro S.,
    9. Isola M.
    Intravitreal Injections: A Healthcare Failure Modes and Effects Analysis. Ophthalmologica 2013, 230 (3), 151–164.
    OpenUrlGoogle Scholar
  46. 46.↵
    1. Shetty G.,
    2. Zeiss B.
    Microlitre Dosing with Prefillable Syringes—When Does a Device Make Sense? ONdrugDelivery Magazine 2019, (97), 28–31.
    Google Scholar
  47. 47.↵
    1. Krayukhina E.,
    2. Tsumoto K.,
    3. Uchiyama S.,
    4. Fukui K.
    Effects of Syringe Material and Silicone Oil Lubrication on the Stability of Pharmaceutical Proteins. J. Pharm. Sci. 2015, 104 (2), 527–535.
    OpenUrlPubMedGoogle Scholar
  48. 48.↵
    1. Foglia P.,
    2. Prete C. A.,
    3. Zanda M.
    An Inspection System for Pharmaceutical Glass Tubes. WSEAS Transactions on Systems 2015, 14, 123–136.
    OpenUrlGoogle Scholar
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 76 (1)
PDA Journal of Pharmaceutical Science and Technology
Vol. 76, Issue 1
January/February 2022
  • Table of Contents
  • Index by Author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Email Article
Citation Tools
Share
Evaluation of a Novel Prefilled Syringe Concept for Ophthalmic Applications: A Formative Human Factors Study
Chris Franzese, Katsuyuki Takeuchi, Hayley Carabello, Colby Thomas, Koji Nakamura, Adam Kalbermatten, Erika Bajars, Marty Coyne
PDA Journal of Pharmaceutical Science and Technology Jan 2022, 76 (1) 19-33; DOI: 10.5731/pdajpst.2019.010835
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget

Jump to section

  • Article
    • Abstract
    • Introduction
    • Methods
    • Results
    • Use Errors
    • Subjective Feedback
    • Discussion
    • Conclusion
    • Conflict of Interest Declaration
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Nitrogen Dioxide sterilization follows log-linear microbial inactivation kinetics using Geobacillus stearothermophilus biological indicators
  • Worldwide Regulatory Reliance: Results of an Executed Chemistry, Manufacturing, and Control Post-Approval Change Pilot
  • Preservative Efficacy Testing of Refrigerated Pharmaceuticals: Choice of Challenging Isolate and Storage Temperature
Show more Research

Similar Articles

Keywords

  • Ophthalmology
  • Intravitreal injection
  • Drug delivery device
  • Prefilled syringe
  • Human factors
  • Usability

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire
Alerts for this Article
Sign In to Email Alerts with your Email Address
Email this Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Evaluation of a Novel Prefilled Syringe Concept for Ophthalmic Applications: A Formative Human Factors Study
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
1 + 5 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Evaluation of a Novel Prefilled Syringe Concept for Ophthalmic Applications: A Formative Human Factors Study
Chris Franzese, Katsuyuki Takeuchi, Hayley Carabello, Colby Thomas, Koji Nakamura, Adam Kalbermatten, Erika Bajars, Marty Coyne
PDA Journal of Pharmaceutical Science and Technology Jan 2022, 76 (1) 19-33; DOI: 10.5731/pdajpst.2019.010835

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

We use cookies on this site to enhance your user experience

By clicking any link on this page you are giving your consent for us to set cookies.