Skip to main content
  • Main menu
  • User menu
  • Search

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleResearch

Replacing the Emulsion for Bake-on Siliconization of Containers—Comparison of Emulsion Stability and Container Performance in the Context of Protein Formulations

Fabian Moll, Karoline Bechtold-Peters, James Mellman, JÜrgen Sigg and Wolfgang Friess
PDA Journal of Pharmaceutical Science and Technology March 2022, 76 (2) 89-108; DOI: https://doi.org/10.5731/pdajpst.2021.012640
Fabian Moll
1Department of Pharmacy, Pharmaceutical Technology & Biopharmaceutics, Ludwig-Maximilians-University Munich, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Karoline Bechtold-Peters
2Technical Research and Development (TRD) Biologics, Novartis Pharma AG, Basel, Switzerland; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
James Mellman
2Technical Research and Development (TRD) Biologics, Novartis Pharma AG, Basel, Switzerland; and
3SHL Medical AG, Zug, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JÜrgen Sigg
2Technical Research and Development (TRD) Biologics, Novartis Pharma AG, Basel, Switzerland; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wolfgang Friess
1Department of Pharmacy, Pharmaceutical Technology & Biopharmaceutics, Ludwig-Maximilians-University Munich, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: wolfgang.friess@lrz.uni-muenchen.de
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Ingle R. G.,
    2. Agarwal A. S.
    Pre-Filled Syringe – a Ready-to-Use Drug Delivery System: A Review. Expert Opin. Drug Delivery 2014, 11 (9), 1391–1399. https://doi.org/10.1517/17425247.2014.923400.
    OpenUrlGoogle Scholar
  2. 2.↵
    1. Sacha G.,
    2. Rogers J. A.,
    3. Miller R. L.
    Pre-Filled Syringes: A Review of the History, Manufacturing and Challenges. Pharm. Dev. Technol. 2015, 20 (1), 1–11. https://doi.org/10.3109/10837450.2014.982825.
    OpenUrlGoogle Scholar
  3. 3.↵
    1. Sacha G. A.,
    2. Saffell-Clemmer W.,
    3. Abram K.,
    4. Akers M. J.
    Practical Fundamentals of Glass, Rubber, and Plastic Sterile Packaging Systems. Pharm. Dev. Technol. 2010, 15 (1), 6–34. https://doi.org/10.3109/10837450903511178.
    OpenUrlPubMedGoogle Scholar
  4. 4.↵
    1. Makwana S.,
    2. Basu B.,
    3. Makasana Y.,
    4. Dharamsi A.
    Prefilled Syringes: An Innovation in Parenteral Packaging. Int. J. Pharm. Invest. 2011, 1 (4), 200–206. https://doi.org/10.4103/2230-973X.93004.
    OpenUrlGoogle Scholar
  5. 5.↵
    1. Warne N. W.,
    2. Mahler H. C.
    Challenges in Protein Product Development. Warne N. W., Mahler H. C., Eds.; AAPS Advances in the Pharmaceutical Sciences Series Vol. 38; Springer, Cham, 2018. https://doi.org/10.1007/978-3-319-90603-4.
    Google Scholar
  6. 6.↵
    1. Funke S.,
    2. Matilainen J.,
    3. Nalenz H.,
    4. Bechtold-Peters K.,
    5. Mahler H.-C.,
    6. Friess W.
    Silicone Migration from Baked-on Silicone Layers. Particle Characterization in Placebo and Protein Solutions. J. Pharm. Sci. 2016, 105 (12), 3520–3531. https://doi.org/10.1016/j.xphs.2016.08.031.
    OpenUrlGoogle Scholar
  7. 7.↵
    1. Gerhardt A.,
    2. Mcgraw N. R.,
    3. Schwartz D. K.,
    4. Bee J. S.,
    5. Carpenter J. F.,
    6. Randolph T. W.
    Protein Aggregation and Particle Formation in Prefilled Glass Syringes. J. Pharm. Sci. 2014, 103 (6), 1601–1612. https://doi.org/10.1002/jps.23973.
    OpenUrlGoogle Scholar
  8. 8.↵
    1. Jones L. S.,
    2. Kaufmann A.,
    3. Middaugh C. R.
    Silicone Oil Induced Aggregation of Proteins. J. Pharm. Sci. 2005, 94 (4), 918–927. https://doi.org/10.1002/jps.20321.
    OpenUrlCrossRefPubMedGoogle Scholar
  9. 9.↵
    1. Shah M.,
    2. Rattray Z.,
    3. Day K.,
    4. Uddin S.,
    5. Curtis R.,
    6. van der Walle C. F.,
    7. Pluen A.
    Evaluation of Aggregate and Silicone-Oil Counts in Pre-Filled Siliconized Syringes: An Orthogonal Study Characterising the Entire Subvisible Size Range. Int. J. Pharm. 2017, 519 (1-2), 58–66. https://doi.org/10.1016/j.ijpharm.2017.01.015.
    OpenUrlGoogle Scholar
  10. 10.↵
    1. Li J.,
    2. Pinnamaneni S.,
    3. Quan Y.,
    4. Jaiswal A.,
    5. Andersson F. I.,
    6. Zhang X.
    Mechanistic Understanding of Protein-Silicone Oil Interactions. Pharm. Res. 2012, 29 (6), 1689–1697. https://doi.org/10.1007/s11095-012-0696-6.
    OpenUrlCrossRefPubMedGoogle Scholar
  11. 11.↵
    1. Badkar A.,
    2. Wolf A.,
    3. Bohack L.,
    4. Kolhe P.
    Development of Biotechnology Products in Pre-Filled Syringes: Technical Considerations and Approaches. AAPS PharmSciTech 2011, 12 (2), 564–572. https://doi.org/10.1208/s12249-011-9617-y.
    OpenUrlPubMedGoogle Scholar
  12. 12.↵
    1. Thirumangalathu R.,
    2. Krishnan S.,
    3. Ricci M. S.,
    4. Brems D. N.,
    5. Randolph T. W.,
    6. Carpenter J. F.
    Silicone Oil- and Agitation-Induced Aggregation of a Monoclonal Antibody in Aqueous Solution. J. Pharm. Sci. 2009, 98 (9), 3167–3181. https://doi.org/10.1002/jps.21719.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  13. 13.↵
    1. Basu P.,
    2. Blake-Haskins A. W.,
    3. O'Berry K. B.,
    4. Randolph T. W.,
    5. Carpenter J. F.
    Albinterferon α2b Adsorption to Silicone Oil–Water Interfaces: Effects on Protein Conformation, Aggregation, and Subvisible Particle Formation. J. Pharm. Sci. 2014, 103 (2), 427–436. https://doi.org/10.1002/jps.23821.
    OpenUrlGoogle Scholar
  14. 14.↵
    1. Chisholm C. F.,
    2. Baker A. E.,
    3. Soucie K. R.,
    4. Torres R. M.,
    5. Carpenter J. F.,
    6. Randolph T. W.
    Silicone Oil Microdroplets Can Induce Antibody Responses against Recombinant Murine Growth Hormone in Mice. J. Pharm. Sci. 2016, 105 (5), 1623–1632. https://doi.org/10.1016/j.xphs.2016.02.019.
    OpenUrlGoogle Scholar
  15. 15.↵
    1. Gerhardt A.,
    2. Nguyen B. H.,
    3. Lewus R.,
    4. Carpenter J. F.,
    5. Randolph T. W.
    Effect of the Siliconization Method on Particle Generation in a Monoclonal Antibody Formulation in Pre-Filled Syringes. J. Pharm. Sci. 2015, 104 (5), 1601–1609. https://doi.org/10.1002/jps.24387.
    OpenUrlGoogle Scholar
  16. 16.↵
    1. Funke S.,
    2. Matilainen J.,
    3. Nalenz H.,
    4. Bechtold-Peters K.,
    5. Mahler H.-C.,
    6. Friess W.
    Analysis of Thin Baked-on Silicone Layers by FTIR and 3D-Laser Scanning Microscopy. Eur. J. Pharm. Biopharm. 2015, 96, 304–313. https://doi.org/10.1016/j.ejpb.2015.08.009.
    OpenUrlGoogle Scholar
  17. 17.↵
    1. Mundry A. T.
    Einbrennsilikonisierung Bei Pharmazeutischen Glaspackmitteln - Analytische Studien Eines Produktionsprozesses. Ph.D. Thesis, Humboldt-Universität zu Berlin, 1999.
    Google Scholar
  18. 18.↵
    1. Mundry T.,
    2. Surmann P.,
    3. Schurreit T.
    Surface Characterization of Polydimethylsiloxane Treated Pharmaceutical Glass Containers by X-Ray-Excited Photo- and Auger Electron Spectroscopy. Fresenius’ J. Anal. Chem. 2000, 368 (8), 820–831. https://doi.org/10.1007/s002160000593.
    OpenUrlPubMedGoogle Scholar
  19. 19.↵
    DDP Specialty Products Germany Gmbh & Co. Kg. Sicherheitsdatenblatt, Dow CorningTM 365 35% Dimethicone NF Emulsion, Version: 3.0, Oct 13, 2018.
    Google Scholar
  20. 20.↵
    DDP Specialty Products Germany Gmbh & Co. Kg. Sicherheitsdatenblatt, Dow CorningTM 366 35% Dimethicone NF Emulsion, Version: 2.0, Jan 18, 2019.
    Google Scholar
  21. 21.↵
    1. Funke S.,
    2. Matilainen J.,
    3. Nalenz H.,
    4. Bechtold-Peters K.,
    5. Mahler H.-C.,
    6. Vetter F.,
    7. Müller C.,
    8. Bracher F.,
    9. Friess W.
    Optimization of the Bake-on Siliconization of Cartridges. Part II: Investigations into Burn-in Time and Temperature. Eur. J. Pharm. Biopharm. 2016, 105, 209–222. https://doi.org/10.1016/j.ejpb.2016.05.015.
    OpenUrlGoogle Scholar
  22. 22.↵
    Dow Corning Corporation. Product Information Dow Corning® 360 Medical Fluid; Form No. 51-0374O-01.
    Google Scholar
  23. 23.↵
    Dow Corning Corporation. Dow Corning® 365, 35% Dimethicone NF Emulsion and Dow Corning® 366 35% Dimethicone NF Emulsion Frequently Asked Questions; Form No. 52-1040C-01.
    Google Scholar
  24. 24.↵
    1. Kishore R. S. K.,
    2. Kiese S.,
    3. Fischer S.,
    4. Pappenberger A.,
    5. Grauschopf U.,
    6. Mahler H.-C.
    The Degradation of Polysorbates 20 and 80 and Its Potential Impact on the Stability of Biotherapeutics. Pharm. Res. 2011, 28 (5), 1194–1210. https://doi.org/10.1007/s11095-011-0385-x.
    OpenUrlPubMedGoogle Scholar
  25. 25.↵
    1. Camino G.,
    2. Lomakin S. M.,
    3. Lazzari M.
    Polydimethylsiloxane Thermal Degradation Part 1. Kinetic Aspects. Polymer 2001, 42 (6), 2395–2402. https://doi.org/10.1016/S0032-3861(00)00652-2.
    OpenUrlGoogle Scholar
  26. 26.↵
    1. Camino G.,
    2. Lomakin S. M.,
    3. Lageard M.
    Thermal Polydimethylsiloxane Degradation. Part 2. The Degradation Mechanisms. Polymer 2002, 43 (7), 2011–2015. https://doi.org/10.1016/S0032-3861(01)00785-6.
    OpenUrlGoogle Scholar
  27. 27.↵
    1. Thomas T. H.,
    2. Kendrick T. C.
    Thermal Analysis of Polydimethylsiloxanes. I. Thermal Degradation in Controlled Atmospheres. J. Polym. Sci. A-2 Polym. Phys. 1969, 7 (3), 537–549. https://doi.org/10.1002/pol.1969.160070308.
    OpenUrlGoogle Scholar
  28. 28.↵
    1. Ballistreri A.,
    2. Garozzo D.,
    3. Montaudo G.
    Mass Spectral Characterization and Thermal Decomposition Mechanism of Poly(Dimethylsiloxane). Macromolecules 1984, 17 (7), 1312–1315. https://doi.org/10.1021/ma00137a003.
    OpenUrlGoogle Scholar
  29. 29.↵
    1. Grassie N.,
    2. Macfarlane I. G.
    The Thermal Degradation of Polysiloxanes-I. Poly(Dimethylsiloxane). Eur. Polym. J. 1978, 14 (11), 875–884. https://doi.org/10.1016/0014-3057(78)90084-8.
    OpenUrlCrossRefGoogle Scholar
  30. 30.↵
    1. Clarson S. J.,
    2. Semlyen J. A.
    Studies of Cyclic and Linear Poly(Dimethyl-Siloxanes): 21. High Temperature Thermal Behaviour. Polymer 1986, 27 (1), 91–95. https://doi.org/10.1016/0032-3861(86)90360-5.
    OpenUrlGoogle Scholar
  31. 31.↵
    1. Pretsch E.,
    2. Bühlmann P.,
    3. Badertscher M.
    Structure Determination of Organic Compounds, Springer: Berlin, Heidelberg, 2009. https://doi.org/10.1007/978-3-540-93810-1.
    Google Scholar
  32. 32.↵
    1. Detloff T.,
    2. Sobisch T.,
    3. Lerche D.
    Particle Size Distribution by Space or Time Dependent Extinction Profiles Obtained by Analytical Centrifugation. Part. Part. Syst. Charact. 2006, 23 (2), 184–187. https://doi.org/10.1002/ppsc.200601028.
    OpenUrlGoogle Scholar
  33. 33.↵
    1. Detloff T.,
    2. Sobisch T.,
    3. Lerche D.
    Particle Size Distribution by Space or Time Dependent Extinction Profiles Obtained by Analytical Centrifugation (Concentrated Systems). Powder Technol. 2007, 174 (1-2), 50–55. https://doi.org/10.1016/j.powtec.2006.10.021.
    OpenUrlGoogle Scholar
  34. 34.↵
    1. Owens D. K.,
    2. Wendt R. C.
    Estimation of the Surface Free Energy of Polymers. J. Appl. Polym. Sci. 1969, 13 (8), 1741–1747. https://doi.org/10.1002/app.1969.070130815.
    OpenUrlCrossRefGoogle Scholar
  35. 35.↵
    1. Schramm L. L.
    Emulsions, Foams, and Suspensions; Wiley-VCH: Weinheim, Germany, 2005. https://doi.org/10.1002/3527606750.
    Google Scholar
  36. 36.↵
    1. Dörfler H.-D.
    Grenzflächen und Kolloid-Disperse Systeme, Springer: Berlin, Heidelberg, 2002.
    Google Scholar
  37. 37.↵
    1. Goodarzi F.,
    2. Zendehboudi S.
    A Comprehensive Review on Emulsions and Emulsion Stability in Chemical and Energy Industries. Can. J. Chem. Eng. 2019, 97 (1), 281–309. https://doi.org/10.1002/cjce.23336.
    OpenUrlGoogle Scholar
  38. 38.↵
    1. Tadros T. F.
    Emulsion Formation and Stability; Tadros T. F., Ed.; Wiley-VCH: Weinheim, Germany, 2013. https://doi.org/10.1002/9783527647941.
    Google Scholar
  39. 39.↵
    1. Lauth G. J.,
    2. Kowalczyk J.
    Einführung in die Physik und Chemie der Grenzflächen und Kolloide; Springer: Berlin, Heidelberg, 2016. https://doi.org/10.1007/978-3-662-47018-3.
    Google Scholar
  40. 40.↵
    1. Nieloud F.,
    2. Marti-Mestres G.
    Pharmaceutical Emulsions and Suspensions; Nieloud F., Marti-Mestres G., Eds.; Marcel Dekker: New York, 2000.
    Google Scholar
  41. 41.↵
    1. Binks B. P.
    Modern Aspects of Emulsion Science; Binks B. P., Ed.; Royal Society of Chemistry: Cambridge, 1998. https://doi.org/10.1039/9781847551474.
    Google Scholar
  42. 42.↵
    1. Funke S.,
    2. Matilainen J.,
    3. Nalenz H.,
    4. Bechtold-Peters K.,
    5. Mahler H.-C.,
    6. Friess W.
    Optimization of the Bake-on Siliconization of Cartridges. Part I: Optimization of the Spray-on Parameters. Eur. J. Pharm. Biopharm. 2016, 104, 200–215. https://doi.org/10.1016/j.ejpb.2016.05.007.
    OpenUrlGoogle Scholar
  43. 43.↵
    1. McClements D. J.,
    2. Jafari S. M.
    Improving Emulsion Formation, Stability and Performance Using Mixed Emulsifiers: A Review. Adv. Colloid Interface Sci. 2018, 251 55–79. https://doi.org/10.1016/j.cis.2017.12.001.
    OpenUrlGoogle Scholar
  44. 44.↵
    1. Vilasau J.,
    2. Solans C.,
    3. Gómez M.,
    4. Dabrio J.,
    5. Mújika-Garai R.,
    6. Esquena J.
    Stability of Oil-in-Water Paraffin Emulsions Prepared in a Mixed Ionic/Nonionic Surfactant System. Colloids Surf., A 2011, 389 (1-3), 222–229. https://doi.org/10.1016/j.colsurfa.2011.08.023.
    OpenUrlGoogle Scholar
  45. 45.↵
    1. Buszello K.,
    2. Harnisch S.,
    3. Müller R. H.,
    4. Müller B. W.
    The Influence of Alkali Fatty Acids on the Properties and the Stability of Parenteral O/W Emulsions Modified with Solutol HS 15®. Eur. J. Pharm. Biopharm. 2000, 49 (2), 143–149. https://doi.org/10.1016/S0939-6411(99)00081-8.
    OpenUrlPubMedGoogle Scholar
  46. 46.↵
    Sigma-Aldrich Chemie GmbH. Sicherheitsdatenblatt Gemäß Verordnung (EG) Nr. 1907/2006 Propylene Glycol; April 26, 2020.
    Google Scholar
  47. 47.↵
    Roth GmbH. Sicherheitsdatenblatt Gemäss Verordnung (EG) Nr. 1907/2006 (REACH), Geändert Mit 2015/830/EU 2-Phenoxyethanol ≥99% Zur Synthese; Aug 10, 2018.
    Google Scholar
  48. 48.↵
    Roth GmbH. Sicherheitsdatenblatt Gemäß Verordnung (EG) Nr. 1907/2006 (REACH),4-Hydroxybenzoesäure-Methylester ROTICHROM® Working Standard; Jan 14, 2016.
    Google Scholar
  49. 49.↵
    Sigma-Aldrich Chemie GmbH. Sicherheitsdatenblatt Gemäß Verordnung (EG) Nr 1907/2006 4-Hydroxybenzoesäure-Propylester; Apr 17, 2019.
    Google Scholar
  50. 50.↵
    1. Chatterjee K.,
    2. Dollimore D.,
    3. Alexander K.
    A New Application for the Antoine Equation in Formulation Development. Int. J. Pharm. 2001, 213 (1-2), 31–44. https://doi.org/10.1016/S0378-5173(00)00644-X.
    OpenUrlPubMedGoogle Scholar
  51. 51.↵
    1. Kishore R. S. K.,
    2. Pappenberger A.,
    3. Dauphin I. B.,
    4. Ross A.,
    5. Buergi B.,
    6. Staempfli A.,
    7. Mahler H.-C.
    Degradation of Polysorbates 20 and 80: Studies on Thermal Autoxidation and Hydrolysis. J. Pharm. Sci. 2011, 100 (2), 721–731. https://doi.org/10.1002/jps.22290.
    OpenUrlPubMedGoogle Scholar
  52. 52.↵
    1. Kerwin B. A.
    Polysorbates 20 and 80 Used in the Formulation of Protein Biotherapeutics: Structure and Degradation Pathways. J. Pharm. Sci. 2008, 97 (8), 2924–2935. https://doi.org/10.1002/jps.21190.
    OpenUrlCrossRefPubMedGoogle Scholar
  53. 53.↵
    1. Donbrow M.,
    2. Azaz E.,
    3. Pillersdorf A.
    Autoxidation of Polysorbates. J. Pharm. Sci. 1978, 67 (12), 1676–1681. https://doi.org/10.1002/jps.2600671211.
    OpenUrlCrossRefPubMedGoogle Scholar
  54. 54.↵
    1. Schick M. J.
    Nonionic Surfactants: Physical Chemistry; Schick M. J., Ed.; Surfactant Science Series Vol 23; Marcel Dekker: New York, 1987.
    Google Scholar
  55. 55.↵
    1. Santacesaria E.,
    2. Gelosa D.,
    3. Di Serio M.,
    4. Tesser R.
    Thermal Stability of Nonionic Polyoxyalkylene Surfactants. J. Appl. Polym. Sci. 1991, 42 (7), 2053–2061. https://doi.org/10.1002/app.1991.070420733.
    OpenUrlGoogle Scholar
  56. 56.↵
    1. Mitsuda K.,
    2. Kimura H.,
    3. Murahashi T.
    Evaporation and Decomposition of Triton X-100 under Various Gases and Temperatures. J. Mater. Sci. 1989, 24 (2), 413–419. https://doi.org/10.1007/BF01107420.
    OpenUrlGoogle Scholar
  57. 57.↵
    Council of Europe, Polysorbat 20. In European Pharmacopoeia (Ph. Eur.), 9th Edition, Council of Europe: Strasbourg, France, 2007; pp 5054–5055.
    Google Scholar
  58. 58.↵
    Roth GmbH. Freiwillige Sicherheitsinformation in Anlehnung an Das Sicherheitsdatenblattformat Gemäß Verordnung (EG) Nr. 1907/2006 (REACH) - Myristinsäure ≥ 98%, Für Die Biochemie; Mar 3, 2020.
    Google Scholar
  59. 59.↵
    Roth GmbH. Freiwillige Sicherheitsinformation in Anlehnung an Das Sicherheitsdatenblattformat Gemäß Verordnung (EG) Nr. 1907/2006 (REACH) - Palmitinsäure ≥98 %, Reinst; Dec 12, 2019.
    Google Scholar
  60. 60.↵
    Roth GmbH. Freiwillige Sicherheitsinformation in Anlehnung an Das Sicherheitsdatenblattformat Gemäß Verordnung (EG) Nr. 1907/2006 (REACH) - Stearinsäure ≥98; Dec 12, 2019.
    Google Scholar
  61. 61.↵
    Roth GmbH. Freiwillige Sicherheitsinformation in Anlehnung an Das Sicherheitsdatenblattformat Gemäß Verordnung (EG) Nr. 1907/2006 (REACH)- Ölsäure ROTICHROM® GC; Aug 8, 2019.
    Google Scholar
  62. 62.↵
    Santa Cruz Biotechnology, Inc. Safety Data Sheet 1,4-Anhydro-D-Sorbitol; Revision Date Nov 20, 2014.
    Google Scholar
  63. 63.↵
    1. Christenson H.,
    2. Friberg S. E.
    Spectroscopic Investigation of the Mutual Interactions between Nonionic Surfactant, Hydrocarbon, and Water. J. Colloid Interface Sci. 1980, 75 (1), 276–285. https://doi.org/10.1016/0021-9797(80)90369-0.
    OpenUrlGoogle Scholar
  64. 64.↵
    1. Nilsson P. G.,
    2. Wennerstroem H.,
    3. Lindman B.
    Structure of Micellar Solutions of Nonionic Surfactants. Nuclear Magnetic Resonance Self-Diffusion and Proton Relaxation Studies of Poly(Ethylene Oxide) Alkyl Ethers. J. Phys. Chem. 1983, 87 (8), 1377–1385. https://doi.org/10.1021/j100231a021.
    OpenUrlCrossRefGoogle Scholar
  65. 65.↵
    1. Loosli V.,
    2. Germershaus O.,
    3. Steinberg H.,
    4. Dreher S.,
    5. Grauschopf U.,
    6. Funke S.
    Methods to Determine the Silicone Oil Layer Thickness in Sprayed-On Siliconized Syringes. PDA J. Pharm. Sci. Technol. 2018, 72 (3), 278–297. https://doi.org/10.5731/pdajpst.2017.007997.
    OpenUrlAbstract/FREE Full TextGoogle Scholar
  66. 66.↵
    1. Rechendorff K.,
    2. Hovgaard M. B.,
    3. Foss M.,
    4. Zhdanov V. P.,
    5. Besenbacher F.
    Enhancement of Protein Adsorption Induced by Surface Roughness. Langmuir 2006, 22 (26), 10885–10888. https://doi.org/10.1021/la0621923.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  67. 67.↵
    1. Lord M. S.,
    2. Foss M.,
    3. Besenbacher F.
    Influence of Nanoscale Surface Topography on Protein Adsorption and Cellular Response. Nano Today 2010, 5 (1), 66–78. https://doi.org/10.1016/j.nantod.2010.01.001.
    OpenUrlCrossRefWeb of ScienceGoogle Scholar
  68. 68.↵
    1. Mathes J. M.
    Protein Adsorption to Vial Surfaces – Quantification, Structural and Mechanistic Studies, Ph.D. Thesis, LMU Munich, 2010.
    Google Scholar
  69. 69.↵
    1. Felsovalyi F.,
    2. Janvier S.,
    3. Jouffray S.,
    4. Soukiassian H.,
    5. Mangiagalli P.
    Silicone-Oil-Based Subvisible Particles: Their Detection, Interactions, and Regulation in Prefilled Container Closure Systems for Biopharmaceuticals. J. Pharm. Sci. 2012, 101 (12), 4569–4583. https://doi.org/10.1002/jps.23328.
    OpenUrlPubMedGoogle Scholar
  70. 70.↵
    1. Singh S. K.,
    2. Afonina N.,
    3. Awwad M.,
    4. Bechtold-Peters K.,
    5. Blue J. T.,
    6. Chou D.,
    7. Cromwell M.,
    8. Krause H.-J.,
    9. Mahler H.-C.,
    10. Meyer B. K.,
    11. Narhi L.,
    12. Nesta D. P.,
    13. Spitznagel T.
    An Industry Perspective on the Monitoring of Subvisible Particles as a Quality Attribute for Protein Therapeutics. J. Pharm. Sci. 2010, 99 (8), 3302–3321. https://doi.org/10.1002/jps.22097.
    OpenUrlCrossRefPubMedGoogle Scholar
  71. 71.↵
    1. Zölls S.,
    2. Tantipolphan R.,
    3. Wiggenhorn M.,
    4. Winter G.,
    5. Jiskoot W.,
    6. Friess W.,
    7. Hawe A.
    Particles in Therapeutic Protein Formulations, Part 1: Overview of Analytical Methods. J. Pharm. Sci. 2012, 101 (3), 914–935. https://doi.org/10.1002/jps.23001.
    OpenUrlCrossRefPubMedGoogle Scholar
  72. 72.↵
    1. Lorenz B.,
    2. Krick B. A.,
    3. Rodriguez N.,
    4. Sawyer W. G.,
    5. Mangiagalli P.,
    6. Persson B. N. J.
    Static or Breakloose Friction for Lubricated Contacts: The Role of Surface Roughness and Dewetting. J. Phys.: Condens. Matter 2013, 25 (44), 445013. https://doi.org/10.1088/0953-8984/25/44/445013.
    OpenUrlCrossRefPubMedGoogle Scholar
  73. 73.↵
    1. Eu B.,
    2. Cairns A.,
    3. Ding G.,
    4. Cao X.,
    5. Wen Z.-Q.
    Direct Visualization of Protein Adsorption to Primary Containers by Gold Nanoparticles. J. Pharm. Sci. 2011, 100 (5), 1663–1670. https://doi.org/10.1002/jps.22410.
    OpenUrlPubMedGoogle Scholar
  74. 74.↵
    1. Chan E.,
    2. Hubbard A.,
    3. Sane S.,
    4. Maa Y.-F.
    Syringe Siliconization Process Investigation and Optimization. PDA J. Pharm. Sci. Technol. 2012, 66 (2), 136–150. https://doi.org/10.5731/pdajpst.2012.00856.
    OpenUrlAbstract/FREE Full TextGoogle Scholar
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 76 (2)
PDA Journal of Pharmaceutical Science and Technology
Vol. 76, Issue 2
March/April 2022
  • Table of Contents
  • Index by Author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Email Article
Citation Tools
Share
Replacing the Emulsion for Bake-on Siliconization of Containers—Comparison of Emulsion Stability and Container Performance in the Context of Protein Formulations
Fabian Moll, Karoline Bechtold-Peters, James Mellman, JÜrgen Sigg, Wolfgang Friess
PDA Journal of Pharmaceutical Science and Technology Mar 2022, 76 (2) 89-108; DOI: 10.5731/pdajpst.2021.012640
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget

Jump to section

  • Article
    • Abstract
    • 1. Introduction
    • 2. Materials and Methods
    • 3. Results and Discussion
    • 4. Conclusion
    • Conflict of Interest Declaration
    • Acknowledgments
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Evaluation of Extreme Depyrogenation Conditions on the Surface Hydrolytic Resistance of Glass Containers for Pharmaceutical Use
  • A Holistic Approach for Filling Volume Variability Evaluation and Control with Statistical Tool
  • A Proof-of-Concept Study on a Universal Standard Kit to Evaluate the Risks of Inspectors for Their Foundational Ability of Visual Inspection of Injectable Drug Products
Show more Research

Similar Articles

Keywords

  • Bake-on siliconization
  • Protein formulation
  • Drug/device combination product
  • Primary packaging
  • Biopharmaceuticals
  • Silicone interaction
  • Silicone layer characterization

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire
Alerts for this Article
Sign In to Email Alerts with your Email Address
Email this Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Replacing the Emulsion for Bake-on Siliconization of Containers—Comparison of Emulsion Stability and Container Performance in the Context of Protein Formulations
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
6 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Replacing the Emulsion for Bake-on Siliconization of Containers—Comparison of Emulsion Stability and Container Performance in the Context of Protein Formulations
Fabian Moll, Karoline Bechtold-Peters, James Mellman, JÜrgen Sigg, Wolfgang Friess
PDA Journal of Pharmaceutical Science and Technology Mar 2022, 76 (2) 89-108; DOI: 10.5731/pdajpst.2021.012640

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

We use cookies on this site to enhance your user experience

By clicking any link on this page you are giving your consent for us to set cookies.