Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleResearch

Replacing the Emulsion for Bake-on Siliconization of Containers—Comparison of Emulsion Stability and Container Performance in the Context of Protein Formulations

Fabian Moll, Karoline Bechtold-Peters, James Mellman, JÜrgen Sigg and Wolfgang Friess
PDA Journal of Pharmaceutical Science and Technology March 2022, 76 (2) 89-108; DOI: https://doi.org/10.5731/pdajpst.2021.012640
Fabian Moll
1Department of Pharmacy, Pharmaceutical Technology & Biopharmaceutics, Ludwig-Maximilians-University Munich, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Karoline Bechtold-Peters
2Technical Research and Development (TRD) Biologics, Novartis Pharma AG, Basel, Switzerland; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
James Mellman
2Technical Research and Development (TRD) Biologics, Novartis Pharma AG, Basel, Switzerland; and
3SHL Medical AG, Zug, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JÜrgen Sigg
2Technical Research and Development (TRD) Biologics, Novartis Pharma AG, Basel, Switzerland; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wolfgang Friess
1Department of Pharmacy, Pharmaceutical Technology & Biopharmaceutics, Ludwig-Maximilians-University Munich, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: wolfgang.friess@lrz.uni-muenchen.de
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Ingle R. G.,
    2. Agarwal A. S.
    Pre-Filled Syringe – a Ready-to-Use Drug Delivery System: A Review. Expert Opin. Drug Delivery 2014, 11 (9), 1391–1399. https://doi.org/10.1517/17425247.2014.923400.
    OpenUrl
  2. 2.↵
    1. Sacha G.,
    2. Rogers J. A.,
    3. Miller R. L.
    Pre-Filled Syringes: A Review of the History, Manufacturing and Challenges. Pharm. Dev. Technol. 2015, 20 (1), 1–11. https://doi.org/10.3109/10837450.2014.982825.
    OpenUrl
  3. 3.↵
    1. Sacha G. A.,
    2. Saffell-Clemmer W.,
    3. Abram K.,
    4. Akers M. J.
    Practical Fundamentals of Glass, Rubber, and Plastic Sterile Packaging Systems. Pharm. Dev. Technol. 2010, 15 (1), 6–34. https://doi.org/10.3109/10837450903511178.
    OpenUrlPubMed
  4. 4.↵
    1. Makwana S.,
    2. Basu B.,
    3. Makasana Y.,
    4. Dharamsi A.
    Prefilled Syringes: An Innovation in Parenteral Packaging. Int. J. Pharm. Invest. 2011, 1 (4), 200–206. https://doi.org/10.4103/2230-973X.93004.
    OpenUrl
  5. 5.↵
    1. Warne N. W.,
    2. Mahler H. C.
    Challenges in Protein Product Development. Warne N. W., Mahler H. C., Eds.; AAPS Advances in the Pharmaceutical Sciences Series Vol. 38; Springer, Cham, 2018. https://doi.org/10.1007/978-3-319-90603-4.
  6. 6.↵
    1. Funke S.,
    2. Matilainen J.,
    3. Nalenz H.,
    4. Bechtold-Peters K.,
    5. Mahler H.-C.,
    6. Friess W.
    Silicone Migration from Baked-on Silicone Layers. Particle Characterization in Placebo and Protein Solutions. J. Pharm. Sci. 2016, 105 (12), 3520–3531. https://doi.org/10.1016/j.xphs.2016.08.031.
    OpenUrl
  7. 7.↵
    1. Gerhardt A.,
    2. Mcgraw N. R.,
    3. Schwartz D. K.,
    4. Bee J. S.,
    5. Carpenter J. F.,
    6. Randolph T. W.
    Protein Aggregation and Particle Formation in Prefilled Glass Syringes. J. Pharm. Sci. 2014, 103 (6), 1601–1612. https://doi.org/10.1002/jps.23973.
    OpenUrl
  8. 8.↵
    1. Jones L. S.,
    2. Kaufmann A.,
    3. Middaugh C. R.
    Silicone Oil Induced Aggregation of Proteins. J. Pharm. Sci. 2005, 94 (4), 918–927. https://doi.org/10.1002/jps.20321.
    OpenUrlCrossRefPubMed
  9. 9.↵
    1. Shah M.,
    2. Rattray Z.,
    3. Day K.,
    4. Uddin S.,
    5. Curtis R.,
    6. van der Walle C. F.,
    7. Pluen A.
    Evaluation of Aggregate and Silicone-Oil Counts in Pre-Filled Siliconized Syringes: An Orthogonal Study Characterising the Entire Subvisible Size Range. Int. J. Pharm. 2017, 519 (1-2), 58–66. https://doi.org/10.1016/j.ijpharm.2017.01.015.
    OpenUrl
  10. 10.↵
    1. Li J.,
    2. Pinnamaneni S.,
    3. Quan Y.,
    4. Jaiswal A.,
    5. Andersson F. I.,
    6. Zhang X.
    Mechanistic Understanding of Protein-Silicone Oil Interactions. Pharm. Res. 2012, 29 (6), 1689–1697. https://doi.org/10.1007/s11095-012-0696-6.
    OpenUrlCrossRefPubMed
  11. 11.↵
    1. Badkar A.,
    2. Wolf A.,
    3. Bohack L.,
    4. Kolhe P.
    Development of Biotechnology Products in Pre-Filled Syringes: Technical Considerations and Approaches. AAPS PharmSciTech 2011, 12 (2), 564–572. https://doi.org/10.1208/s12249-011-9617-y.
    OpenUrlPubMed
  12. 12.↵
    1. Thirumangalathu R.,
    2. Krishnan S.,
    3. Ricci M. S.,
    4. Brems D. N.,
    5. Randolph T. W.,
    6. Carpenter J. F.
    Silicone Oil- and Agitation-Induced Aggregation of a Monoclonal Antibody in Aqueous Solution. J. Pharm. Sci. 2009, 98 (9), 3167–3181. https://doi.org/10.1002/jps.21719.
    OpenUrlCrossRefPubMedWeb of Science
  13. 13.↵
    1. Basu P.,
    2. Blake-Haskins A. W.,
    3. O'Berry K. B.,
    4. Randolph T. W.,
    5. Carpenter J. F.
    Albinterferon α2b Adsorption to Silicone Oil–Water Interfaces: Effects on Protein Conformation, Aggregation, and Subvisible Particle Formation. J. Pharm. Sci. 2014, 103 (2), 427–436. https://doi.org/10.1002/jps.23821.
    OpenUrl
  14. 14.↵
    1. Chisholm C. F.,
    2. Baker A. E.,
    3. Soucie K. R.,
    4. Torres R. M.,
    5. Carpenter J. F.,
    6. Randolph T. W.
    Silicone Oil Microdroplets Can Induce Antibody Responses against Recombinant Murine Growth Hormone in Mice. J. Pharm. Sci. 2016, 105 (5), 1623–1632. https://doi.org/10.1016/j.xphs.2016.02.019.
    OpenUrl
  15. 15.↵
    1. Gerhardt A.,
    2. Nguyen B. H.,
    3. Lewus R.,
    4. Carpenter J. F.,
    5. Randolph T. W.
    Effect of the Siliconization Method on Particle Generation in a Monoclonal Antibody Formulation in Pre-Filled Syringes. J. Pharm. Sci. 2015, 104 (5), 1601–1609. https://doi.org/10.1002/jps.24387.
    OpenUrl
  16. 16.↵
    1. Funke S.,
    2. Matilainen J.,
    3. Nalenz H.,
    4. Bechtold-Peters K.,
    5. Mahler H.-C.,
    6. Friess W.
    Analysis of Thin Baked-on Silicone Layers by FTIR and 3D-Laser Scanning Microscopy. Eur. J. Pharm. Biopharm. 2015, 96, 304–313. https://doi.org/10.1016/j.ejpb.2015.08.009.
    OpenUrl
  17. 17.↵
    1. Mundry A. T.
    Einbrennsilikonisierung Bei Pharmazeutischen Glaspackmitteln - Analytische Studien Eines Produktionsprozesses. Ph.D. Thesis, Humboldt-Universität zu Berlin, 1999.
  18. 18.↵
    1. Mundry T.,
    2. Surmann P.,
    3. Schurreit T.
    Surface Characterization of Polydimethylsiloxane Treated Pharmaceutical Glass Containers by X-Ray-Excited Photo- and Auger Electron Spectroscopy. Fresenius’ J. Anal. Chem. 2000, 368 (8), 820–831. https://doi.org/10.1007/s002160000593.
    OpenUrlPubMed
  19. 19.↵
    DDP Specialty Products Germany Gmbh & Co. Kg. Sicherheitsdatenblatt, Dow CorningTM 365 35% Dimethicone NF Emulsion, Version: 3.0, Oct 13, 2018.
  20. 20.↵
    DDP Specialty Products Germany Gmbh & Co. Kg. Sicherheitsdatenblatt, Dow CorningTM 366 35% Dimethicone NF Emulsion, Version: 2.0, Jan 18, 2019.
  21. 21.↵
    1. Funke S.,
    2. Matilainen J.,
    3. Nalenz H.,
    4. Bechtold-Peters K.,
    5. Mahler H.-C.,
    6. Vetter F.,
    7. Müller C.,
    8. Bracher F.,
    9. Friess W.
    Optimization of the Bake-on Siliconization of Cartridges. Part II: Investigations into Burn-in Time and Temperature. Eur. J. Pharm. Biopharm. 2016, 105, 209–222. https://doi.org/10.1016/j.ejpb.2016.05.015.
    OpenUrl
  22. 22.↵
    Dow Corning Corporation. Product Information Dow Corning® 360 Medical Fluid; Form No. 51-0374O-01.
  23. 23.↵
    Dow Corning Corporation. Dow Corning® 365, 35% Dimethicone NF Emulsion and Dow Corning® 366 35% Dimethicone NF Emulsion Frequently Asked Questions; Form No. 52-1040C-01.
  24. 24.↵
    1. Kishore R. S. K.,
    2. Kiese S.,
    3. Fischer S.,
    4. Pappenberger A.,
    5. Grauschopf U.,
    6. Mahler H.-C.
    The Degradation of Polysorbates 20 and 80 and Its Potential Impact on the Stability of Biotherapeutics. Pharm. Res. 2011, 28 (5), 1194–1210. https://doi.org/10.1007/s11095-011-0385-x.
    OpenUrlPubMed
  25. 25.↵
    1. Camino G.,
    2. Lomakin S. M.,
    3. Lazzari M.
    Polydimethylsiloxane Thermal Degradation Part 1. Kinetic Aspects. Polymer 2001, 42 (6), 2395–2402. https://doi.org/10.1016/S0032-3861(00)00652-2.
    OpenUrl
  26. 26.↵
    1. Camino G.,
    2. Lomakin S. M.,
    3. Lageard M.
    Thermal Polydimethylsiloxane Degradation. Part 2. The Degradation Mechanisms. Polymer 2002, 43 (7), 2011–2015. https://doi.org/10.1016/S0032-3861(01)00785-6.
    OpenUrl
  27. 27.↵
    1. Thomas T. H.,
    2. Kendrick T. C.
    Thermal Analysis of Polydimethylsiloxanes. I. Thermal Degradation in Controlled Atmospheres. J. Polym. Sci. A-2 Polym. Phys. 1969, 7 (3), 537–549. https://doi.org/10.1002/pol.1969.160070308.
    OpenUrl
  28. 28.↵
    1. Ballistreri A.,
    2. Garozzo D.,
    3. Montaudo G.
    Mass Spectral Characterization and Thermal Decomposition Mechanism of Poly(Dimethylsiloxane). Macromolecules 1984, 17 (7), 1312–1315. https://doi.org/10.1021/ma00137a003.
    OpenUrl
  29. 29.↵
    1. Grassie N.,
    2. Macfarlane I. G.
    The Thermal Degradation of Polysiloxanes-I. Poly(Dimethylsiloxane). Eur. Polym. J. 1978, 14 (11), 875–884. https://doi.org/10.1016/0014-3057(78)90084-8.
    OpenUrlCrossRef
  30. 30.↵
    1. Clarson S. J.,
    2. Semlyen J. A.
    Studies of Cyclic and Linear Poly(Dimethyl-Siloxanes): 21. High Temperature Thermal Behaviour. Polymer 1986, 27 (1), 91–95. https://doi.org/10.1016/0032-3861(86)90360-5.
    OpenUrl
  31. 31.↵
    1. Pretsch E.,
    2. Bühlmann P.,
    3. Badertscher M.
    Structure Determination of Organic Compounds, Springer: Berlin, Heidelberg, 2009. https://doi.org/10.1007/978-3-540-93810-1.
  32. 32.↵
    1. Detloff T.,
    2. Sobisch T.,
    3. Lerche D.
    Particle Size Distribution by Space or Time Dependent Extinction Profiles Obtained by Analytical Centrifugation. Part. Part. Syst. Charact. 2006, 23 (2), 184–187. https://doi.org/10.1002/ppsc.200601028.
    OpenUrl
  33. 33.↵
    1. Detloff T.,
    2. Sobisch T.,
    3. Lerche D.
    Particle Size Distribution by Space or Time Dependent Extinction Profiles Obtained by Analytical Centrifugation (Concentrated Systems). Powder Technol. 2007, 174 (1-2), 50–55. https://doi.org/10.1016/j.powtec.2006.10.021.
    OpenUrl
  34. 34.↵
    1. Owens D. K.,
    2. Wendt R. C.
    Estimation of the Surface Free Energy of Polymers. J. Appl. Polym. Sci. 1969, 13 (8), 1741–1747. https://doi.org/10.1002/app.1969.070130815.
    OpenUrlCrossRef
  35. 35.↵
    1. Schramm L. L.
    Emulsions, Foams, and Suspensions; Wiley-VCH: Weinheim, Germany, 2005. https://doi.org/10.1002/3527606750.
  36. 36.↵
    1. Dörfler H.-D.
    Grenzflächen und Kolloid-Disperse Systeme, Springer: Berlin, Heidelberg, 2002.
  37. 37.↵
    1. Goodarzi F.,
    2. Zendehboudi S.
    A Comprehensive Review on Emulsions and Emulsion Stability in Chemical and Energy Industries. Can. J. Chem. Eng. 2019, 97 (1), 281–309. https://doi.org/10.1002/cjce.23336.
    OpenUrl
  38. 38.↵
    1. Tadros T. F.
    Emulsion Formation and Stability; Tadros T. F., Ed.; Wiley-VCH: Weinheim, Germany, 2013. https://doi.org/10.1002/9783527647941.
  39. 39.↵
    1. Lauth G. J.,
    2. Kowalczyk J.
    Einführung in die Physik und Chemie der Grenzflächen und Kolloide; Springer: Berlin, Heidelberg, 2016. https://doi.org/10.1007/978-3-662-47018-3.
  40. 40.↵
    1. Nieloud F.,
    2. Marti-Mestres G.
    Pharmaceutical Emulsions and Suspensions; Nieloud F., Marti-Mestres G., Eds.; Marcel Dekker: New York, 2000.
  41. 41.↵
    1. Binks B. P.
    Modern Aspects of Emulsion Science; Binks B. P., Ed.; Royal Society of Chemistry: Cambridge, 1998. https://doi.org/10.1039/9781847551474.
  42. 42.↵
    1. Funke S.,
    2. Matilainen J.,
    3. Nalenz H.,
    4. Bechtold-Peters K.,
    5. Mahler H.-C.,
    6. Friess W.
    Optimization of the Bake-on Siliconization of Cartridges. Part I: Optimization of the Spray-on Parameters. Eur. J. Pharm. Biopharm. 2016, 104, 200–215. https://doi.org/10.1016/j.ejpb.2016.05.007.
    OpenUrl
  43. 43.↵
    1. McClements D. J.,
    2. Jafari S. M.
    Improving Emulsion Formation, Stability and Performance Using Mixed Emulsifiers: A Review. Adv. Colloid Interface Sci. 2018, 251 55–79. https://doi.org/10.1016/j.cis.2017.12.001.
    OpenUrl
  44. 44.↵
    1. Vilasau J.,
    2. Solans C.,
    3. Gómez M.,
    4. Dabrio J.,
    5. Mújika-Garai R.,
    6. Esquena J.
    Stability of Oil-in-Water Paraffin Emulsions Prepared in a Mixed Ionic/Nonionic Surfactant System. Colloids Surf., A 2011, 389 (1-3), 222–229. https://doi.org/10.1016/j.colsurfa.2011.08.023.
    OpenUrl
  45. 45.↵
    1. Buszello K.,
    2. Harnisch S.,
    3. Müller R. H.,
    4. Müller B. W.
    The Influence of Alkali Fatty Acids on the Properties and the Stability of Parenteral O/W Emulsions Modified with Solutol HS 15®. Eur. J. Pharm. Biopharm. 2000, 49 (2), 143–149. https://doi.org/10.1016/S0939-6411(99)00081-8.
    OpenUrlPubMed
  46. 46.↵
    Sigma-Aldrich Chemie GmbH. Sicherheitsdatenblatt Gemäß Verordnung (EG) Nr. 1907/2006 Propylene Glycol; April 26, 2020.
  47. 47.↵
    Roth GmbH. Sicherheitsdatenblatt Gemäss Verordnung (EG) Nr. 1907/2006 (REACH), Geändert Mit 2015/830/EU 2-Phenoxyethanol ≥99% Zur Synthese; Aug 10, 2018.
  48. 48.↵
    Roth GmbH. Sicherheitsdatenblatt Gemäß Verordnung (EG) Nr. 1907/2006 (REACH),4-Hydroxybenzoesäure-Methylester ROTICHROM® Working Standard; Jan 14, 2016.
  49. 49.↵
    Sigma-Aldrich Chemie GmbH. Sicherheitsdatenblatt Gemäß Verordnung (EG) Nr 1907/2006 4-Hydroxybenzoesäure-Propylester; Apr 17, 2019.
  50. 50.↵
    1. Chatterjee K.,
    2. Dollimore D.,
    3. Alexander K.
    A New Application for the Antoine Equation in Formulation Development. Int. J. Pharm. 2001, 213 (1-2), 31–44. https://doi.org/10.1016/S0378-5173(00)00644-X.
    OpenUrlPubMed
  51. 51.↵
    1. Kishore R. S. K.,
    2. Pappenberger A.,
    3. Dauphin I. B.,
    4. Ross A.,
    5. Buergi B.,
    6. Staempfli A.,
    7. Mahler H.-C.
    Degradation of Polysorbates 20 and 80: Studies on Thermal Autoxidation and Hydrolysis. J. Pharm. Sci. 2011, 100 (2), 721–731. https://doi.org/10.1002/jps.22290.
    OpenUrlPubMed
  52. 52.↵
    1. Kerwin B. A.
    Polysorbates 20 and 80 Used in the Formulation of Protein Biotherapeutics: Structure and Degradation Pathways. J. Pharm. Sci. 2008, 97 (8), 2924–2935. https://doi.org/10.1002/jps.21190.
    OpenUrlCrossRefPubMed
  53. 53.↵
    1. Donbrow M.,
    2. Azaz E.,
    3. Pillersdorf A.
    Autoxidation of Polysorbates. J. Pharm. Sci. 1978, 67 (12), 1676–1681. https://doi.org/10.1002/jps.2600671211.
    OpenUrlCrossRefPubMed
  54. 54.↵
    1. Schick M. J.
    Nonionic Surfactants: Physical Chemistry; Schick M. J., Ed.; Surfactant Science Series Vol 23; Marcel Dekker: New York, 1987.
  55. 55.↵
    1. Santacesaria E.,
    2. Gelosa D.,
    3. Di Serio M.,
    4. Tesser R.
    Thermal Stability of Nonionic Polyoxyalkylene Surfactants. J. Appl. Polym. Sci. 1991, 42 (7), 2053–2061. https://doi.org/10.1002/app.1991.070420733.
    OpenUrl
  56. 56.↵
    1. Mitsuda K.,
    2. Kimura H.,
    3. Murahashi T.
    Evaporation and Decomposition of Triton X-100 under Various Gases and Temperatures. J. Mater. Sci. 1989, 24 (2), 413–419. https://doi.org/10.1007/BF01107420.
    OpenUrl
  57. 57.↵
    Council of Europe, Polysorbat 20. In European Pharmacopoeia (Ph. Eur.), 9th Edition, Council of Europe: Strasbourg, France, 2007; pp 5054–5055.
  58. 58.↵
    Roth GmbH. Freiwillige Sicherheitsinformation in Anlehnung an Das Sicherheitsdatenblattformat Gemäß Verordnung (EG) Nr. 1907/2006 (REACH) - Myristinsäure ≥ 98%, Für Die Biochemie; Mar 3, 2020.
  59. 59.↵
    Roth GmbH. Freiwillige Sicherheitsinformation in Anlehnung an Das Sicherheitsdatenblattformat Gemäß Verordnung (EG) Nr. 1907/2006 (REACH) - Palmitinsäure ≥98 %, Reinst; Dec 12, 2019.
  60. 60.↵
    Roth GmbH. Freiwillige Sicherheitsinformation in Anlehnung an Das Sicherheitsdatenblattformat Gemäß Verordnung (EG) Nr. 1907/2006 (REACH) - Stearinsäure ≥98; Dec 12, 2019.
  61. 61.↵
    Roth GmbH. Freiwillige Sicherheitsinformation in Anlehnung an Das Sicherheitsdatenblattformat Gemäß Verordnung (EG) Nr. 1907/2006 (REACH)- Ölsäure ROTICHROM® GC; Aug 8, 2019.
  62. 62.↵
    Santa Cruz Biotechnology, Inc. Safety Data Sheet 1,4-Anhydro-D-Sorbitol; Revision Date Nov 20, 2014.
  63. 63.↵
    1. Christenson H.,
    2. Friberg S. E.
    Spectroscopic Investigation of the Mutual Interactions between Nonionic Surfactant, Hydrocarbon, and Water. J. Colloid Interface Sci. 1980, 75 (1), 276–285. https://doi.org/10.1016/0021-9797(80)90369-0.
    OpenUrl
  64. 64.↵
    1. Nilsson P. G.,
    2. Wennerstroem H.,
    3. Lindman B.
    Structure of Micellar Solutions of Nonionic Surfactants. Nuclear Magnetic Resonance Self-Diffusion and Proton Relaxation Studies of Poly(Ethylene Oxide) Alkyl Ethers. J. Phys. Chem. 1983, 87 (8), 1377–1385. https://doi.org/10.1021/j100231a021.
    OpenUrlCrossRef
  65. 65.↵
    1. Loosli V.,
    2. Germershaus O.,
    3. Steinberg H.,
    4. Dreher S.,
    5. Grauschopf U.,
    6. Funke S.
    Methods to Determine the Silicone Oil Layer Thickness in Sprayed-On Siliconized Syringes. PDA J. Pharm. Sci. Technol. 2018, 72 (3), 278–297. https://doi.org/10.5731/pdajpst.2017.007997.
    OpenUrlAbstract/FREE Full Text
  66. 66.↵
    1. Rechendorff K.,
    2. Hovgaard M. B.,
    3. Foss M.,
    4. Zhdanov V. P.,
    5. Besenbacher F.
    Enhancement of Protein Adsorption Induced by Surface Roughness. Langmuir 2006, 22 (26), 10885–10888. https://doi.org/10.1021/la0621923.
    OpenUrlCrossRefPubMedWeb of Science
  67. 67.↵
    1. Lord M. S.,
    2. Foss M.,
    3. Besenbacher F.
    Influence of Nanoscale Surface Topography on Protein Adsorption and Cellular Response. Nano Today 2010, 5 (1), 66–78. https://doi.org/10.1016/j.nantod.2010.01.001.
    OpenUrlCrossRefWeb of Science
  68. 68.↵
    1. Mathes J. M.
    Protein Adsorption to Vial Surfaces – Quantification, Structural and Mechanistic Studies, Ph.D. Thesis, LMU Munich, 2010.
  69. 69.↵
    1. Felsovalyi F.,
    2. Janvier S.,
    3. Jouffray S.,
    4. Soukiassian H.,
    5. Mangiagalli P.
    Silicone-Oil-Based Subvisible Particles: Their Detection, Interactions, and Regulation in Prefilled Container Closure Systems for Biopharmaceuticals. J. Pharm. Sci. 2012, 101 (12), 4569–4583. https://doi.org/10.1002/jps.23328.
    OpenUrlPubMed
  70. 70.↵
    1. Singh S. K.,
    2. Afonina N.,
    3. Awwad M.,
    4. Bechtold-Peters K.,
    5. Blue J. T.,
    6. Chou D.,
    7. Cromwell M.,
    8. Krause H.-J.,
    9. Mahler H.-C.,
    10. Meyer B. K.,
    11. Narhi L.,
    12. Nesta D. P.,
    13. Spitznagel T.
    An Industry Perspective on the Monitoring of Subvisible Particles as a Quality Attribute for Protein Therapeutics. J. Pharm. Sci. 2010, 99 (8), 3302–3321. https://doi.org/10.1002/jps.22097.
    OpenUrlCrossRefPubMed
  71. 71.↵
    1. Zölls S.,
    2. Tantipolphan R.,
    3. Wiggenhorn M.,
    4. Winter G.,
    5. Jiskoot W.,
    6. Friess W.,
    7. Hawe A.
    Particles in Therapeutic Protein Formulations, Part 1: Overview of Analytical Methods. J. Pharm. Sci. 2012, 101 (3), 914–935. https://doi.org/10.1002/jps.23001.
    OpenUrlCrossRefPubMed
  72. 72.↵
    1. Lorenz B.,
    2. Krick B. A.,
    3. Rodriguez N.,
    4. Sawyer W. G.,
    5. Mangiagalli P.,
    6. Persson B. N. J.
    Static or Breakloose Friction for Lubricated Contacts: The Role of Surface Roughness and Dewetting. J. Phys.: Condens. Matter 2013, 25 (44), 445013. https://doi.org/10.1088/0953-8984/25/44/445013.
    OpenUrlCrossRefPubMed
  73. 73.↵
    1. Eu B.,
    2. Cairns A.,
    3. Ding G.,
    4. Cao X.,
    5. Wen Z.-Q.
    Direct Visualization of Protein Adsorption to Primary Containers by Gold Nanoparticles. J. Pharm. Sci. 2011, 100 (5), 1663–1670. https://doi.org/10.1002/jps.22410.
    OpenUrlPubMed
  74. 74.↵
    1. Chan E.,
    2. Hubbard A.,
    3. Sane S.,
    4. Maa Y.-F.
    Syringe Siliconization Process Investigation and Optimization. PDA J. Pharm. Sci. Technol. 2012, 66 (2), 136–150. https://doi.org/10.5731/pdajpst.2012.00856.
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 76 (2)
PDA Journal of Pharmaceutical Science and Technology
Vol. 76, Issue 2
March/April 2022
  • Table of Contents
  • Index by Author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Replacing the Emulsion for Bake-on Siliconization of Containers—Comparison of Emulsion Stability and Container Performance in the Context of Protein Formulations
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
2 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Replacing the Emulsion for Bake-on Siliconization of Containers—Comparison of Emulsion Stability and Container Performance in the Context of Protein Formulations
Fabian Moll, Karoline Bechtold-Peters, James Mellman, JÜrgen Sigg, Wolfgang Friess
PDA Journal of Pharmaceutical Science and Technology Mar 2022, 76 (2) 89-108; DOI: 10.5731/pdajpst.2021.012640

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Replacing the Emulsion for Bake-on Siliconization of Containers—Comparison of Emulsion Stability and Container Performance in the Context of Protein Formulations
Fabian Moll, Karoline Bechtold-Peters, James Mellman, JÜrgen Sigg, Wolfgang Friess
PDA Journal of Pharmaceutical Science and Technology Mar 2022, 76 (2) 89-108; DOI: 10.5731/pdajpst.2021.012640
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • 1. Introduction
    • 2. Materials and Methods
    • 3. Results and Discussion
    • 4. Conclusion
    • Conflict of Interest Declaration
    • Acknowledgments
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Quantitative and Qualitative Evaluation of Microorganism Profile Identified in Bioburden Analysis in a Biopharmaceutical Facility in Brazil: Criteria for Classification and Management of Results
  • Evaluation of Extreme Depyrogenation Conditions on the Surface Hydrolytic Resistance of Glass Containers for Pharmaceutical Use
  • A Holistic Approach for Filling Volume Variability Evaluation and Control with Statistical Tool
Show more Research

Similar Articles

Keywords

  • Bake-on siliconization
  • Protein formulation
  • Drug/device combination product
  • Primary packaging
  • Biopharmaceuticals
  • Silicone interaction
  • Silicone layer characterization

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire