Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleResearch

Systematic Design, Generation, and Application of Synthetic Datasets for Flow Cytometry

Melissa Cheung, Jonathan J. Campbell, Robert J. Thomas, Julian Braybrook and Jon Petzing
PDA Journal of Pharmaceutical Science and Technology May 2022, 76 (3) 200-215; DOI: https://doi.org/10.5731/pdajpst.2021.012659
Melissa Cheung
1Centre for Biological Engineering, Loughborough University, Loughborough, Leicestershire, United Kingdom; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: M.Cheung@lboro.ac.uk
Jonathan J. Campbell
2National Measurement Laboratory, LGC, Teddington, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert J. Thomas
1Centre for Biological Engineering, Loughborough University, Loughborough, Leicestershire, United Kingdom; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Julian Braybrook
2National Measurement Laboratory, LGC, Teddington, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jon Petzing
1Centre for Biological Engineering, Loughborough University, Loughborough, Leicestershire, United Kingdom; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Phillips W.,
    2. Medcalf N.,
    3. Dalgarno K.,
    4. Makatoris H.,
    5. Sharples S.,
    6. Srai J.,
    7. Hourd P.,
    8. Kapletia D.
    Redistributed Manufacturing in Healthcare: Creating New Value through Disruptive Innovation; 2018. White Paper, UK EPSRC Redistributed Manufacturing in Healthcare Network. https://uwerepository.worktribe.com/output/999236 (accessed November 5, 2020)
  2. 2.↵
    1. Pedregosa F.,
    2. Varoquaux G.,
    3. Gramfort A.,
    4. Michel V.,
    5. Thirion B.,
    6. Grisel O.,
    7. Blondel M.,
    8. Prettenhofer P.,
    9. Weiss R.,
    10. Dubourg V.,
    11. Vanderplas J.,
    12. Passos A.,
    13. Cournapeau D.,
    14. Brucher M.,
    15. Perrot M.,
    16. Duchesnay É.
    Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res 2011, 12 (85), 2825–2830.
    OpenUrlCrossRefPubMed
  3. 3.↵
    1. Ros G.,
    2. Sellart L.,
    3. Materzynska J.,
    4. Vazquez D.,
    5. Lopez A. M.
    The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2016, 3234–3243.
  4. 4.↵
    1. Wrenninge M.,
    2. Unger J.
    Synscapes: A Photorealistic Synthetic Dataset for Street Scene Parsing. 2018. https://arxiv.org/abs/1810.08705 (accessed Nov 20, 2020)
  5. 5.↵
    1. Tremblay J.,
    2. To T.,
    3. Birchfield S.
    Falling Things: A Synthetic Dataset for 3D Object Detection and Pose Estimation. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Work. 2018, 2038–2041.
  6. 6.↵
    1. Hagiwara A.,
    2. Warntjes M.,
    3. Hori M.,
    4. Andica C.,
    5. Nakazawa M.,
    6. Kumamaru K. K.,
    7. Abe O.,
    8. Aoki S.
    SyMRI of the Brain: Rapid Quantification of Relaxation Rates and Proton Density, with Synthetic MRI, Automatic Brain Segmentation, and Myelin Measurement. Invest. Radiol. 2017, 52 (10), 647–657.
    OpenUrl
  7. 7.↵
    1. Ratanaprasatporn L.,
    2. Chikarmane S. A.,
    3. Giess C. S.
    Strengths and Weaknesses of Synthetic Mammography in Screening. RadioGraphics 2017, 37 (7), 1913–1927.
    OpenUrl
  8. 8.↵
    1. Niazi M. K. K.,
    2. Parwani A. V.,
    3. Gurcan M. N.
    Digital Pathology and Artificial Intelligence. Lancet Oncol. 2019, 20 (5), e253–e261.
    OpenUrlCrossRefPubMed
  9. 9.↵
    1. Perez L.,
    2. Wang J.
    The Effectiveness of Data Augmentation in Image Classification Using Deep Learning. 2017. https://arxiv.org/abs/1712.04621 (accessed Jan 5, 2021)
  10. 10.↵
    1. Arvaniti E.,
    2. Claassen M.
    Sensitive Detection of Rare Disease-Associated Cell Subsets via Representation Learning. Nat. Commun. 2017, 8, (1), 14825.
    OpenUrlCrossRef
  11. 11.↵
    The European Parliament and the Council of the European Union. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the Protection of Natural Persons with Regard to the Processing of Personal Data and on the Free Movement of Such Data, and Repealing Directive 95/46/EC. Off. J. Eur. Union 2016, 1–88.
  12. 12.↵
    1. Sugar I. P.,
    2. Sealfon S. C.
    Misty Mountain Clustering: Application to Fast Unsupervised Flow Cytometry Gating. BMC Bioinformatics 2010, 11 (1), 502.
    OpenUrlCrossRefPubMed
  13. 13.↵
    1. Samusik N.,
    2. Good Z.,
    3. Spitzer M. H.,
    4. Davis K. L.,
    5. Nolan G. P.
    Automated Mapping of Phenotype Space with Single-Cell Data. Nat. Methods 2016, 13 (6), 493–496.
    OpenUrl
  14. 14.↵
    1. Naim I.,
    2. Datta S.,
    3. Rebhahn J.,
    4. Cavenaugh J. S.,
    5. Mosmann T. R.,
    6. Sharma G.
    SWIFT-Scalable Clustering for Automated Identification of Rare Cell Populations in Large, High-Dimensional Flow. Cytometry 2014, 85 (5), 408–421.
    OpenUrl
  15. 15.↵
    1. Pyne S.,
    2. Hu X.,
    3. Wang K.,
    4. Rossin E.,
    5. Lin T.-I.,
    6. Maier L. M.,
    7. Baecher-Allan C.,
    8. McLachlan G. J.,
    9. Tamayo P.,
    10. Hafler D. A.,
    11. De Jager P. L.,
    12. Mesirov J. P.
    Automated High-Dimensional Flow Cytometric Data Analysis. Proc. Natl. Acad. Sci. U.S.A. 2009, 106 (21), 8519–8524.
    OpenUrlAbstract/FREE Full Text
  16. 16.↵
    1. Ge Y.,
    2. Sealfon S. C.
    FlowPeaks: A Fast Unsupervised Clustering for Flow Cytometry Data via K-Means and Density Peak Finding. Bioinformatics 2012, 28 (15), 2052–2058.
    OpenUrlCrossRefPubMedWeb of Science
  17. 17.↵
    1. Zare H.,
    2. Shooshtari P.,
    3. Gupta A.,
    4. Brinkman R. R.
    Data Reduction for Spectral Clustering to Analyze High Throughput Flow Cytometry Data. BMC Bioinformatics 2010, 11 (1), 403.
    OpenUrlCrossRefPubMed
  18. 18.↵
    1. Bendall S. C.,
    2. Davis K. L.,
    3. Amir E. A. D.,
    4. Tadmor M. D.,
    5. Simonds E. F.,
    6. Chen T. J.,
    7. Shenfeld D. K.,
    8. Nolan G. P.,
    9. Pe’Er D.
    Single-Cell Trajectory Detection Uncovers Progression and Regulatory Coordination in Human B Cell Development. Cell 2014, 157 (3), 714–725.
    OpenUrlCrossRefPubMedWeb of Science
  19. 19.↵
    1. Bigos M.
    Separation Index: An Easy-to-Use Metric for Evaluation of Different Configurations on the Same Flow Cytometer. Curr. Protoc. Cytom. 2007, 40 (1), 1–21.
    OpenUrl
  20. 20.↵
    1. Telford W. G.,
    2. Babin S. A.,
    3. Khorev S. V.,
    4. Rowe S. H.
    Green Fiber Lasers: An Alternative to Traditional DPSS Green Lasers for Flow Cytometry. Cytometry 2009, 75A (12), 1031–1039.
    OpenUrl
  21. 21.↵
    1. Aghaeepour N.,
    2. Finak G.,
    3. Hoos H.,
    4. Mosmann T. R.,
    5. Brinkman R.,
    6. Gottardo R.,
    7. Scheuermann R. H.,
    8. Gottardo R.,
    9. Scheuermann R. H
    , The FlowCAP Consortium. Critical Assessment of Automated Flow Cytometry Data Analysis Techniques. Nat. Methods 2013, 10 (3), 228–238.
    OpenUrlCrossRefPubMedWeb of Science
  22. 22.↵
    1. Weber L. M.,
    2. Robinson M. D.
    Comparison of Clustering Methods for High-Dimensional Single-Cell Flow and Mass Cytometry Data. Cytometry 2016, 89 (12), 1084–1096. https://doi.org/10.1002/cyto.a.23030.
    OpenUrl
  23. 23.↵
    1. Spidlen J.,
    2. Breuer K.,
    3. Rosenberg C.,
    4. Kotecha N.,
    5. Brinkman R. R.
    FlowRepository: A Resource of Annotated Flow Cytometry Datasets Associated with Peer-Reviewed Publications. Cytometry 2012, 81A (9), 727–731.
    OpenUrl
  24. 24.↵
    International Organization for Standardization. ISO 13528:2005 Statistical Methods for Use in Proficiency Testing by Interlaboratory Comparison. ISO: Geneva, 2005.
  25. 25.↵
    1. Wang L.,
    2. Abbasi F.,
    3. Ornatsky O.,
    4. Cole K. D.,
    5. Misakian M.,
    6. Gaigalas A. K.,
    7. He H.-J.,
    8. Marti G. E.,
    9. Tanner S.,
    10. Stebbings R.
    Stebbings, R. Human CD4 + Lymphocytes for Antigen Quantification: Characterization Using Conventional Flow Cytometry and Mass. Cytometry 2012, 81A (7), 567–575.
    OpenUrlPubMed
  26. 26.↵
    1. Cheung M.,
    2. Campbell J. J.,
    3. Whitby L.,
    4. Thomas R. J.,
    5. Braybrook J.,
    6. Petzing J. N.
    Current Trends in Flow Cytometry Automated Data Analysis Software. Cytometry 2021, 99 (10), 1007–1021.
    OpenUrl
  27. 27.↵
    1. Qiu P.
    Toward Deterministic and Semiautomated SPADE Analysis. Cytometry 2017, 91 (3), 281–289.
    OpenUrl
  28. 28.↵
    1. Qiu W.,
    2. Joe H.
    Separation Index and Partial Membership for Clustering. Comput. Stat. Data Anal. 2006, 50 (3), 585–603.
    OpenUrl
  29. 29.↵
    1. Azzalini A.,
    2. Capitanio A.
    Statistical Applications of the Multivariate Skew Normal Distribution. J. Royal Statistical Soc. B. 1999, 61 (3), 579–602.
    OpenUrl
  30. 30.↵
    1. Fleiss J. L.,
    2. Levin B.,
    3. Paik M. C.
    Statistical Methods for Rates and Proportions, 3rd ed.; John Wiley & Sons: Hoboken, NJ, 2003.
  31. 31.↵
    1. Tharwat A.
    Classification Assessment Methods. Appl. Comput. Inf. 2021, 17 (1), 168–192.
    OpenUrl
  32. 32.↵
    1. Burel J. G.,
    2. Qian Y.,
    3. Lindestam Arlehamn C.,
    4. Weiskopf D.,
    5. Zapardiel-Gonzalo J.,
    6. Taplitz R.,
    7. Gilman R. H.,
    8. Saito M.,
    9. de Silva A. D.,
    10. Vijayanand P.,
    11. Scheuermann R. H.,
    12. Sette A.,
    13. Peters B.
    An Integrated Workflow to Assess Technical and Biological Variability of Cell Population Frequencies in Human Peripheral Blood by Flow Cytometry. J. Immunol. 2017, 198 (4), 1748–1758.
    OpenUrlAbstract/FREE Full Text
  33. 33.↵
    1. Salati S.,
    2. Zini R.,
    3. Bianchi E.,
    4. Testa A.,
    5. Mavilio F.,
    6. Manfredini R.,
    7. Ferrari S.
    Role of CD34 Antigen in Myeloid Differentiation of Human Hematopoietic Progenitor Cells. Stem Cells 2008, 26 (4), 950–959.
    OpenUrlCrossRefPubMed
  34. 34.↵
    1. Joanes D. N.,
    2. Gill C. A.
    Comparing Measures of Sample Skewness and Kurtosis. J. Royal Statistical Soc. D. 1998, 47 (1), 183–189.
    OpenUrl
  35. 35.↵
    1. Bruggner R.V.,
    2. Linderman M. D.,
    3. Sachs K.,
    4. Nolan G. P.,
    5. Plevritis S. K.
    1. Qiu P.,
    2. Simonds E. F.,
    3. Bendall S. C.,
    4. Gibbs K. D.
    , Jr.; Bruggner R.V., Linderman M. D., Sachs K., Nolan G. P., Plevritis S. K. Extracting a Cellular Hierarchy from High-Dimensional Cytometry Data with SPADE. Nat. Biotechnol. 2011, 29 (10), 886–893.
    OpenUrlCrossRefPubMed
  36. 36.↵
    1. Grant R.,
    2. Coopman K.,
    3. Medcalf N.,
    4. Silva-Gomes S.,
    5. Campbell J. J.,
    6. Kara B.,
    7. Braybrook J.,
    8. Petzing J.
    Understanding the Contribution of Operator Measurement Variability within Flow Cytometry Data Analysis for Quality Control of Cell and Gene Therapy Manufacturing. Measurement 2020, 150, 106998.
    OpenUrl
  37. 37.↵
    1. Grant R.,
    2. Coopman K.,
    3. Medcalf N.,
    4. Silva-Gomes S.,
    5. Campbell J. J.,
    6. Kara B.,
    7. Braybrook J.,
    8. Petzing J. N.
    Quantifying Operator Subjectivity within Flow Cytometry Data Analysis as a Source of Measurement Uncertainty and the Impact of Experience on Results. PDA J. Pharm. Sci. Technol. 2021, 75 (1), 33–47.
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 76 (3)
PDA Journal of Pharmaceutical Science and Technology
Vol. 76, Issue 3
May/June 2022
  • Table of Contents
  • Index by Author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Systematic Design, Generation, and Application of Synthetic Datasets for Flow Cytometry
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
2 + 10 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Systematic Design, Generation, and Application of Synthetic Datasets for Flow Cytometry
Melissa Cheung, Jonathan J. Campbell, Robert J. Thomas, Julian Braybrook, Jon Petzing
PDA Journal of Pharmaceutical Science and Technology May 2022, 76 (3) 200-215; DOI: 10.5731/pdajpst.2021.012659

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Systematic Design, Generation, and Application of Synthetic Datasets for Flow Cytometry
Melissa Cheung, Jonathan J. Campbell, Robert J. Thomas, Julian Braybrook, Jon Petzing
PDA Journal of Pharmaceutical Science and Technology May 2022, 76 (3) 200-215; DOI: 10.5731/pdajpst.2021.012659
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • 1. Introduction
    • 2. Materials and Methods
    • 3. Discussion
    • 4. Conclusion
    • Conflict of Interest Declaration
    • Acknowledgments
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Quantitative and Qualitative Evaluation of Microorganism Profile Identified in Bioburden Analysis in a Biopharmaceutical Facility in Brazil: Criteria for Classification and Management of Results
  • Evaluation of Extreme Depyrogenation Conditions on the Surface Hydrolytic Resistance of Glass Containers for Pharmaceutical Use
  • A Holistic Approach for Filling Volume Variability Evaluation and Control with Statistical Tool
Show more Research

Similar Articles

Keywords

  • Flow cytometry
  • Synthetic datasets
  • Clusters
  • Separation
  • Skew
  • Accuracy
  • Repeatability

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire