Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleResearch

A Predictive Modeling Approach to Support the Overfill Volume Definition of Liquid-in-Vial Drug Products

Sébastien Dasnoy, Laura Simonin, Soizic Radulovic, Andy White, Jean-François Decoster and Laurence Denis
PDA Journal of Pharmaceutical Science and Technology September 2022, 76 (5) 384-394; DOI: https://doi.org/10.5731/pdajpst.2021.012658
Sébastien Dasnoy
1UCB Pharma, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: sebastien.dasnoy@ucb.com
Laura Simonin
1UCB Pharma, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Soizic Radulovic
1UCB Pharma, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andy White
2UCB Celltech, 638 Ajax Avenue, Slough, Berkshire, SL1 4BG, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jean-François Decoster
1UCB Pharma, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Laurence Denis
1UCB Pharma, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Mathaes R.,
    2. Mahler H.-C.,
    3. Buettiker J.-P.,
    4. Roehl H.,
    5. Lam P.,
    6. Brown H.,
    7. Luemkemann J.,
    8. Adler M.,
    9. Huwyler J.,
    10. Streubel A.,
    11. Mohl S.
    The Pharmaceutical Vial Capping Process: Container Closure Systems, Capping Equipment, Regulatory Framework, and Seal Quality Tests. Eur. J. Pharm. Biopharm. 2016, 99, 54–64.
    OpenUrlPubMed
  2. 2.↵
    1. Sacha G. A.,
    2. Saffell-Clemmer W.,
    3. Abram K.,
    4. Akers M. J.
    Practical Fundamentals of Glass, Rubber, and Plastic Sterile Packaging Systems. Pharm. Dev. Technol. 2010, 15 (1), 6–34.
    OpenUrlPubMed
  3. 3.↵
    1. Hladik B.,
    2. Buscke F.,
    3. Frost R.,
    4. Rothhaar U.
    Comparative Leachable Study of Glass Vials to Demonstrate the Impact of Low Fill Volume. PDA J. Pharm. Sci. Technol. 2019, 73 (4), 345–355.
    OpenUrlAbstract/FREE Full Text
  4. 4.↵
    U.S. Pharmacopeial Convention. General Chapter <1> Injections. In USP 43—NF 38, USP: Rockville, MD, 2020.
  5. 5.↵
    U.S. Pharmacopeial Convention. General Chapter <1151> Pharmaceutical Dosage Forms. In USP 43—NF 38, USP: Rockville, MD, 2020.
  6. 6.↵
    U.S. Pharmacopeial Convention. General Chapter <697> Container Content for Injections. In USP 43—NF 38, USP: Rockville, MD, 2020.
  7. 7.↵
    Council of Europe, Test for Extractable Volume of Parenteral Preparations, Chapter 2.9.17. In European Pharmacopoeia (Ph. Eur.), 10th Edition, Council of Europe: Strasbourg, France, 2019.
  8. 8.↵
    Ministry of Health Labour and Welfare of Japan, General Tests—6.05: Test for Extractable Volume of Parenteral Preparations. In The Japanese Pharmacopoeia, 17th Edition (English Version), MHLW: Tokyo, 2016.
  9. 9.↵
    U.S. Food and Drug Administration, Guidance for Industry: Allowable Excess Volume and Labeled Vial Fill Size in Injectable Drug and Biological Products. Center for Biologics Evaluation and Research. U.S. Department of Health and Human Services, Rockville, MD, 2015.
  10. 10.↵
    1. Warne N. W.,
    2. Mahler H.-C.
    1. Dimitrova M. N.,
    2. Bee J. S.,
    3. Lu L.,
    4. Fernandez J. E.
    Development of Prefilled Syringe Combination Products for Biologics. In Challenges in Protein Product Development, 1st ed.; Warne N. W., Mahler H.-C., Eds.; AAPS Advances in the Pharmaceutical Sciences Series 38; Springer: Cham, Switzerland, 2018, pp 203–224.
  11. 11.↵
    1. Sedita J.,
    2. Perrella S.,
    3. Morio M.,
    4. Berbari M.,
    5. Hsu J.-S.,
    6. Saxon E.,
    7. Jarrahian C.,
    8. Rein-Weston A.,
    9. Zehrung D.
    Cost of Goods Sold and Total Cost of Delivery for Oral and Parenteral Vaccine Packaging Formats. Vaccine 2018, 36 (12), 1700–1709.
    OpenUrl
  12. 12.↵
    1. Gotham D.,
    2. Barber M. J.,
    3. Hill A. M.
    Estimation of Cost-Based Prices for Injectable Medicines in the WHO Essential Medicines List. BMJ Open 2019, 9 (9), e027780.
    OpenUrlAbstract/FREE Full Text
  13. 13.↵
    1. Hatswell A. J.,
    2. Porter J. K.
    Reducing Drug Wastage in Pharmaceuticals Dosed by Weight or Body Surface Areas by Optimising Vial Sizes. Appl. Health Econ. Health Policy 2019, 17 (3), 391–397.
    OpenUrl
  14. 14.↵
    1. Nema S.,
    2. Ludwig J. D.
    1. Manger W.
    Sterile Drug Product Process Validation. In Parenteral Medications, 4th ed.; Nema S., Ludwig J. D., Eds.; CRC Press: Boca Raton, FL, United States, 2019, pp 852–862.
  15. 15.↵
    1. Mehta S. B.,
    2. Subramanian S.,
    3. Brown R.,
    4. D'Mello R.,
    5. Brisbane C.,
    6. Roy S.
    Use of a Predictive Regression Model for Estimating Hold-Up Volume for Biologic Drug Product Presentations. PDA J. Pharm. Sci. Technol. 2020, 74 (3), 290–300.
    OpenUrlAbstract/FREE Full Text
  16. 16.↵
    1. Warne N. W.,
    2. Mahler H.-C.
    1. Dixon D.,
    2. Gudinas A.
    Biotherapeutic Drug Product Manufacturing and Process Development. In Challenges in Protein Product Development, 1st ed.; Warne N. W., Mahler H.-C., Eds.; AAPS Advances in the Pharmaceutical Sciences Series 38; Springer: Cham, Switzerland, 2018, pp 353–383.
  17. 17.↵
    1. Jameel F.,
    2. Hershenson S.
    1. Sethuraman A.,
    2. Pan X.,
    3. Mehta B.,
    4. Radhakrishnan V.
    Filling Process and Technologies for Liquid Biopharmaceuticals. In Formulation and Process Development Strategies for Manufacturing Biopharmaceuticals, 1st ed.; Jameel F., Hershenson S., Eds.; Wiley, 2010; pp 839–856.
  18. 18.↵
    1. Joglekar A. M.
    Industrial Statistics: Practical Methods and Guidance for Improved Performance, 1st ed.; Wiley & Sons, Inc: Hoboken, NJ, 2010.
  19. 19.↵
    1. Akers M. J.
    1. Kruszynski M. A.
    Sterile Product Filling, Stoppering and Sealing. In Sterile Drug Products: Formulation, Packaging, Manufacturing and Quality, 1st ed.; Akers M. J., Ed.; Drugs and the Pharmaceutical Sciences Book 208; Informa Healthcare: London, 2016; pp 278–293.
  20. 20.↵
    1. Agalloco J. P.,
    2. Carleton F. J.
    1. Levine C. S.
    Validation of Packaging Operations. In Validation of Pharmaceutical Processes, 3rd ed.; Agalloco J. P., Carleton F. J., Eds.; CRC Press: New York, 2007, pp 429–442.
  21. 21.↵
    International Organization for Standardization, ISO 8362-1: 2018: Injection Containers and Accessories — Part 1: Injection Vials Made of Glass Tubing. ISO: Geneva, 2018.
  22. 22.↵
    International Council for Harmonisation. Harmonised Tripartite Guideline Q4B Annex 2 (R1): Test for Extractable Volume of Parenteral Preparations General Chapter. ICH: Geneva, 2010.
  23. 23.↵
    1. Chatterjee S.,
    2. Simonoff S.
    Handbook of Regression Analysis, 1st ed.; Wiley Handbooks in Applied Statistics; Wiley: Hoboken, NJ, 2013.
  24. 24.↵
    1. van der Schoot S. C.,
    2. Nuijen B.,
    3. Huitema A. D. R.,
    4. Beijnen J. H.
    Assessment of Performance of Manufacturing Procedures in a Unit for Production of Investigational Anticancer Agents, Using a Mixed Effects Analysis. Pharm. Res. 2007, 24 (3), 605–612.
    OpenUrlPubMed
  25. 25.↵
    1. Montgomery D. C.
    Introduction to Statistical Quality Control, 6th ed.; Wiley & Sons, Inc: Hoboken, NJ, 2008.
  26. 26.↵
    1. Jiang X.,
    2. Zhu C.,
    3. Ma Y.
    Density and Viscosity of Sorbitol/Maltitol in L-Ascorbic Acid Aqueous Solutions at T = (293.15 to 323.15) K. J. Mol. Liq. 2013, 188, 67–73.
    OpenUrl
  27. 27.↵
    1. Zhu C.,
    2. Ma Y.,
    3. Zhou C.
    Densities and Viscosities of Sugar Alcohol Aqueous Solutions. J. Chem. Eng. Data 2010, 55 (9), 3882–3885.
    OpenUrlCrossRefWeb of Science
  28. 28.↵
    1. Tomar D. S.,
    2. Li L.,
    3. Broulidakis M. P.,
    4. Luksha N. G.,
    5. Burns C. T.,
    6. Singh S. K.,
    7. Kumar S.
    In-Silico Prediction of Concentration-Dependent Viscosity Curves for Monoclonal Antibody Solutions. MAbs 2017, 9 (3), 476–489.
    OpenUrlCrossRef
  29. 29.↵
    1. Besheer A.,
    2. Mahler H.-C.,
    3. Matter-Schwald A.,
    4. Barrenechea S. M.,
    5. Vogt M.,
    6. Chalus P.,
    7. Heymes P.,
    8. Pillow T.,
    9. Kirste A.,
    10. Favrod P.,
    11. Joerg S.,
    12. Mathaes R.
    Evaluation of Different Quality-Relevant Aspects of Closed System Transfer Devices (CSTDs). Pharm. Res. 2020, 37 (4), 81.
    OpenUrl
  30. 30.↵
    1. Woldeyes M. A.,
    2. Qi W.,
    3. Razinkov V. I.,
    4. Furst E. M.,
    5. Roberts C. J.
    How Well Do Low- and High-Concentration Protein Interactions Predict Solution Viscosities of Monoclonal Antibodies? J. Pharm. Sci. 2019, 108 (1), 142–154.
    OpenUrl
  31. 31.↵
    1. Shieu W.,
    2. Lamar D.,
    3. Stauch O. B.,
    4. Maa Y.-F.
    Filling of High-Concentration Monoclonal Antibody Formulations: Investigating Underlying Mechanisms That Affect Precision of Low-Volume Fill by Peristaltic Pump. PDA J. Pharm. Sci. Technol. 2016, 70 (2), 143–156.
    OpenUrlAbstract/FREE Full Text
  32. 32.↵
    1. Nail S. L.,
    2. Akers M. J.
    Development and Manufacture of Protein Pharmaceuticals, 1st ed.; Pharmaceutical Biotechnology Vol. 14; Springer-Verlag: New York, 2012 (reprint).
  33. 33.↵
    1. Rathore N.,
    2. Rajan R. S.
    Current Perspectives on Stability of Protein Drug Products during Formulation, Fill and Finish Operations. Biotechnol. Prog. 2008, 24 (3), 504–514.
    OpenUrlPubMed
  34. 34.↵
    1. Mathes J.,
    2. Friess W.
    Influence of pH and Ionic Strength on IgG Adsorption to Vials. Eur. J. Pharm. Biopharm. 2011, 78 (2), 239–247.
    OpenUrlPubMed
  35. 35.↵
    1. Shi G. H.,
    2. Gopalrathnam G.,
    3. Shinkle S. L.,
    4. Dong X.,
    5. Hofer J. D.,
    6. Jensen E. C.,
    7. Rajagopalan N.
    Impact of Drug Formulation Variables on Silicone Oil Structure and Functionality of Prefilled Syringe System. PDA J. Pharm. Sci. Technol. 2018, 72 (1), 50–61.
    OpenUrlAbstract/FREE Full Text
  36. 36.↵
    1. Shieu W.,
    2. Torhan S. A.,
    3. Chan E.,
    4. Hubbard A.,
    5. Gikanga B.,
    6. Stauch O. B.,
    7. Maa Y.-F.
    Filling of High-Concentration Monoclonal Antibody Formulations into Pre-Filled Syringes: Filling Parameter Investigation and Optimization. PDA J. Pharm. Sci. Technol. 2014, 68 (2), 153–163.
    OpenUrlAbstract/FREE Full Text
  37. 37.↵
    1. Cambruzzi M.,
    2. Macfarlane P.
    Variation in Syringes and Needles Dead Space Compared to the International Organization for Standardization Standard 7886-1:2018. Vet. Anaesth. Analg. 2021, 48 (4), 532–536.
    OpenUrl
  38. 38.↵
    1. Jameel F.,
    2. Hershenson S.,
    3. Khan M. A.,
    4. Martin-Moe S.
    1. Jameel F.,
    2. Undey C.,
    3. Kovach P. M.,
    4. Tanglertpaibul J.
    Application of QbD Elements in the Development and Scale-Up of Commercial Filling Process. In Quality by Design for Biopharmaceutical Drug Product Development, 1st ed.; Jameel F., Hershenson S., Khan M. A., Martin-Moe S., Eds.; AAPS Advances in the Pharmaceutical Sciences Series 18; Springer: New York, 2015; pp 265–302.
  39. 39.↵
    1. Akers M. J.
    1. Akers M. J.
    Overview of Sterile Product Manufacturing. In Sterile Drug Products: Formulation, Packaging, Manufacturing and Quality, 1st ed.; Akers M. J., Ed.; Drugs and the Pharmaceutical Sciences Book 208; Informa Healthcare: London, 2016; pp 180–193.
  40. 40.↵
    1. Jarrahian C.,
    2. Rein-Weston A.,
    3. Saxon G.,
    4. Creelman B.,
    5. Kachmarik G.,
    6. Anand A.,
    7. Zehrung D.
    Vial Usage, Device Dead Space, Vaccine Wastage, and Dose Accuracy of Intradermal Delivery Devices for Inactivated Poliovirus Vaccine (IPV). Vaccine 2017, 35 (14), 1789–1796.
    OpenUrlCrossRef
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 76 (5)
PDA Journal of Pharmaceutical Science and Technology
Vol. 76, Issue 5
September/October 2022
  • Table of Contents
  • Index by Author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A Predictive Modeling Approach to Support the Overfill Volume Definition of Liquid-in-Vial Drug Products
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
11 + 2 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
A Predictive Modeling Approach to Support the Overfill Volume Definition of Liquid-in-Vial Drug Products
Sébastien Dasnoy, Laura Simonin, Soizic Radulovic, Andy White, Jean-François Decoster, Laurence Denis
PDA Journal of Pharmaceutical Science and Technology Sep 2022, 76 (5) 384-394; DOI: 10.5731/pdajpst.2021.012658

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
A Predictive Modeling Approach to Support the Overfill Volume Definition of Liquid-in-Vial Drug Products
Sébastien Dasnoy, Laura Simonin, Soizic Radulovic, Andy White, Jean-François Decoster, Laurence Denis
PDA Journal of Pharmaceutical Science and Technology Sep 2022, 76 (5) 384-394; DOI: 10.5731/pdajpst.2021.012658
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Objective
    • Materials and Methods
    • Results
    • Discussion
    • Conclusion
    • Conflict of Interest Declaration
    • Acknowledgements
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Tolerance Interval Approach for the Determination of Overfill of Liquid Parenteral Drug Products
  • Google Scholar

More in this TOC Section

  • Quantitative and Qualitative Evaluation of Microorganism Profile Identified in Bioburden Analysis in a Biopharmaceutical Facility in Brazil: Criteria for Classification and Management of Results
  • Evaluation of Extreme Depyrogenation Conditions on the Surface Hydrolytic Resistance of Glass Containers for Pharmaceutical Use
  • A Holistic Approach for Filling Volume Variability Evaluation and Control with Statistical Tool
Show more Research

Similar Articles

Keywords

  • Drug product filling
  • Glass vial
  • Overfill volume
  • Hold-Up Volume
  • Extractable volume
  • Viscosity

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire