Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleTechnology/Application

Tailored Media-Fill Test Protocols Inspired by 68Ga Kit-Based Radiopharmaceuticals

Charlotte Donzé, Léa Rubira, Pierre Olivier Kotzki, Emmanuel Deshayes and Cyril Fersing
PDA Journal of Pharmaceutical Science and Technology September 2022, 76 (5) 416-433; DOI: https://doi.org/10.5731/pdajpst.2021.012657
Charlotte Donzé
1University of Montpellier, Department of Nuclear Medicine, Montpellier Cancer Institute (ICM), Montpellier, France;
2Aix Marseille Univ, Faculté de Pharmacie, 27 Boulevard Jean Moulin, CS30064, 13385, Marseille Cedex 05, France;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Léa Rubira
1University of Montpellier, Department of Nuclear Medicine, Montpellier Cancer Institute (ICM), Montpellier, France;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pierre Olivier Kotzki
1University of Montpellier, Department of Nuclear Medicine, Montpellier Cancer Institute (ICM), Montpellier, France;
3Université of Montpellier, Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Montpellier Cancer Institute (ICM), Montpellier, France; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Emmanuel Deshayes
1University of Montpellier, Department of Nuclear Medicine, Montpellier Cancer Institute (ICM), Montpellier, France;
3Université of Montpellier, Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Montpellier Cancer Institute (ICM), Montpellier, France; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Cyril Fersing
1University of Montpellier, Department of Nuclear Medicine, Montpellier Cancer Institute (ICM), Montpellier, France;
4IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: cyril.fersing@icm.unicancer.fr
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Unterrainer M.,
    2. Eze C.,
    3. Ilhan H.,
    4. Marschner S.,
    5. Roengvoraphoj O.,
    6. Schmidt-Hegemann N. S.,
    7. Walter F.,
    8. Kunz W. G.,
    9. Rosenschöld P. M. A.,
    10. Jeraj R.,
    11. Albert N. L.,
    12. Grosu A. L.,
    13. Niyazi M.,
    14. Bartenstein P.,
    15. Belka C.
    Recent Advances of PET Imaging in Clinical Radiation Oncology. Radiat. Oncol. 2020, 15 (1), 88.
    OpenUrl
  2. 2.↵
    1. Schober O.,
    2. Kiessling F.,
    3. Debus J.
    1. Lopci E.,
    2. Fanti S.
    Non-FDG PET/CT. In Molecular Imaging in Oncology; Schober O., Kiessling F., Debus J., Eds.; Recent Results in Cancer Research Vol. 216; Springer International Publishing, 2020; pp 669–718. Available from: http://link.springer.com/10.1007/978-3-030-42618-7_20.
  3. 3.↵
    1. Spang P.,
    2. Herrmann C.,
    3. Roesch F.
    Bifunctional Gallium-68 Chelators: Past, Present, and Future. Semin. Nucl. Med. 2016, 46 (5), 373–394.
    OpenUrl
  4. 4.↵
    1. Roesch F.,
    2. Riss J.
    P. The Renaissance of the 68Ge/68Ga Radionuclide Generator Initiates New Developments in 68Ga Radiopharmaceutical Chemistry. Curr. Top. Med. Chem (Trivandrum, India) 2010, 10 (16), 1633–1668.
    OpenUrl
  5. 5.↵
    1. Velikyan I.
    Prospective of 68Ga-Radiopharmaceutical Development. Theranostics 2014, 4 (1), 47–80.
    OpenUrl
  6. 6.↵
    1. Prince D.,
    2. Rossouw D.,
    3. Davids C.,
    4. Rubow S.
    Development and Evaluation of User-Friendly Single Vial DOTA-Peptide Kit Formulations, Specifically Designed for Radiolabelling with 68Ga from a Tin Dioxide 68Ge/68Ga Generator. Mol. Imaging Biol. 2017, 19 (6), 817–824.
    OpenUrl
  7. 7.↵
    1. Hennrich U.,
    2. Benešová M.
    [68Ga]Ga-DOTA-TOC: The First FDA-Approved 68Ga-Radiopharmaceutical for PET Imaging. Pharmaceuticals 2020, 13 (3), 38.
    OpenUrl
  8. 8.↵
    1. Carlucci G.,
    2. Ippisch R.,
    3. Slavik R.,
    4. Mishoe A.,
    5. Blecha J.,
    6. Zhu S.
    68Ga-PSMA-11 NDA Approval: A Novel and Successful Academic Partnership. J. Nucl. Med. 2021, 62 (2), 149–155.
    OpenUrlAbstract/FREE Full Text
  9. 9.↵
    European Commission, EudraLex—The Rules Governing Medicinal products in the European Union, Volume 4. Good Manufacturing Practice for Medicinal products for Human and Veterinary Use, Annex 3, Manufacture of Radiopharmaceuticals. European Commission: Brussels, 2008. https://ec.europa.eu/health/sites/default/files/files/eudralex/vol-4/2008_09_annex3_en.pdf (accessed October 2, 2021).
  10. 10.↵
    1. Lange R.,
    2. ter Heine R.,
    3. Decristoforo C.,
    4. Peñuelas I.,
    5. Elsinga P. H.,
    6. van der Westerlaken M. M. L.,
    7. Hendrikse N. H.
    Untangling the Web of European Regulations for the Preparation of Unlicensed Radiopharmaceuticals: A Concise Overview and Practical Guidance for a Risk-Based Approach. Nucl. Med. Commun. 2015, 36 (5), 414–422.
    OpenUrl
  11. 11.↵
    1. Decristoforo C.,
    2. Penuelas I.,
    3. Patt M.,
    4. Todde S.
    European Regulations for the Introduction of Novel Radiopharmaceuticals in the Clinical Setting. Q. J. Nucl. Med. Mol. Imaging 2017, 61 (2), 135–144.
    OpenUrl
  12. 12.↵
    1. Boschi S.,
    2. Lodi F.,
    3. Malizia C.,
    4. Cicoria G.,
    5. Marengo M.
    Automation Synthesis Modules Review. Appl. Radiat. Isot. 2013, 76, 38–45.
    OpenUrlCrossRef
  13. 13.↵
    1. Baum R. P.,
    2. Rösch F.
    1. Boschi S.,
    2. Malizia C.,
    3. Lodi F.
    Overview and Perspectives on Automation Strategies in 68Ga Radiopharmaceutical Preparations. In Theranostics, Gallium-68, and Other Radionuclides; Baum R. P., Rösch F., Eds.; Recent Results in Cancer Research Vol. 194; Springer Berlin Heidelberg: Berlin, Heidelberg, 2013; pp 17–31. http://link.springer.com/10.1007/978-3-642-27994-2_2 (accessed April 28, 2022).
  14. 14.↵
    1. Le Roux J.,
    2. Rubow S.,
    3. Ebenhan T.
    A Comparison of Labelling Characteristics of Manual and Automated Synthesis Methods for Gallium-68 Labelled Ubiquicidin. Appl. Radiat. Isot. 2021, 168, 109452.
    OpenUrl
  15. 15.↵
    1. Martin R.,
    2. Jüttler S.,
    3. Müller M.,
    4. Wester H.-J.
    Cationic Eluate Pretreatment for Automated Synthesis of [68Ga]CPCR4.2. Nucl. Med. Biol. 2014, 41 (1), 84–89.
    OpenUrlCrossRefPubMed
  16. 16.↵
    1. Iori M.,
    2. Capponi P. C.,
    3. Rubagotti S.,
    4. Esposizione L. R.,
    5. Seemann J.,
    6. Pitzschler R.,
    7. Dreger T.,
    8. Formisano D.,
    9. Grassi E.,
    10. Fioroni F.,
    11. Versari A.,
    12. Asti M.
    Labelling of 90Y- and 177Lu-DOTA-Bioconjugates for Targeted Radionuclide Therapy: A Comparison among Manual, Semiautomated, and Fully Automated Synthesis. Contrast Media Mol. Imaging 2017, 2017, 1–12.
    OpenUrlPubMed
  17. 17.↵
    1. Bouwman-Boer Y.,
    2. Fenton-May V.,
    3. Le Brun P.
    1. Boom F.,
    2. Beaney A.
    Aseptic Handling. In Practical Pharmaceutics; Bouwman-Boer Y., Fenton-May V., Le Brun P., eds.; Springer International Publishing, 2015; pp 695–706. http://link.springer.com/10.1007/978-3-319-15814-3_31 (accessed April 28, 2022).
  18. 18.↵
    1. Savry A.,
    2. Correard F.,
    3. Bennis Y.,
    4. Roubaud S.,
    5. Gauthier-Villano L.,
    6. Pisano P.,
    7. Pourroy B.
    Aseptic Simulation Test for Cytotoxic Drug Production in Isolators. Am. J. Health-Syst. Pharm. 2014, 71 (6), 476–481.
    OpenUrlAbstract/FREE Full Text
  19. 19.↵
    1. Romero Jiménez R. M.,
    2. Pernía López M. S.,
    3. Sánchez Fresneda M. N.,
    4. Sanjurjo Sáez M.
    Validation of Aseptic Technique of Parenteral Nutrition Compounding in a Pharmacy Service According to USP Chapter 797. Nutr. Hosp. 2013, 28 (5), 1494–1497.
    OpenUrl
  20. 20.↵
    1. Krämer I.,
    2. Federici M.,
    3. Kaiser V.,
    4. Thiesen J.
    Media-Fill Simulation Tests in Manual and Robotic Aseptic Preparation of Injection Solutions in Syringes. J. Oncol. Pharm. Pract. 2016, 22 (2), 195–204.
    OpenUrlCrossRefPubMed
  21. 21.↵
    1. Martin T.,
    2. Moyon A.,
    3. Fersing C.,
    4. Terrier E.,
    5. Gouillet A.,
    6. Giraud F.,
    7. Guillet B.,
    8. Garrigue P.
    Have You Looked for “Stranger Things” in Your Automated PET Dose Dispensing System? A Process and Operators Qualification Scheme. EJNMMI Radiopharm. Chem. 2019, 4 (1), 11.
    OpenUrl
  22. 22.↵
    1. Geersing T. H.,
    2. Franssen E. J. F.,
    3. Pilesi F.,
    4. Crul M.
    Microbiological Performance of a Robotic System for Aseptic Compounding of Cytostatic Drugs. Eur. J. Pharm. Sci. 2019, 130, 181–185.
    OpenUrl
  23. 23.↵
    U.S. Food and Drug Administration. PET Drugs—Current Good Manufacturing Practice (CGMP); Small Entity Compliance Guide. FDA website. https://www.fda.gov/files/drugs/published/PET-Drugs–Current-Good-Manufacturing-Practice-%28CGMP%29–Small-Entity-Compliance-Guide.pdf (accessed Oct 2, 2021).
  24. 24.↵
    1. Vincenti S.,
    2. Scotognella T.,
    3. Bruno S.,
    4. et al.
    Media Fill Test for Validation of Non-Radioactive Kit for Radiopharmaceutical Preparations. Curr. Radiopharm., in press.
  25. 25.↵
    1. Fersing C.,
    2. Deshayes E.,
    3. Langlet S.,
    4. Calas L.,
    5. Lisowski V.,
    6. Kotzki P. O.
    Implementation and Validation of an in-House Combined Fluorescein/Media-Fill Test to Qualify Radiopharmacy Operators. EJNMMI Radiopharm. Chem. 2021, 6 (1), 2.
    OpenUrl
  26. 26.↵
    U.S. Pharmacopeial Convention. General Chapter <71>Sterility Tests. In USP 41—NF 36 USP: Rockville, MD, 2018; pp 5984–5991.
  27. 27.↵
    Council of Europe, Sterility, Chapter 2.6.1. In European Pharmacopoeia (Ph. Eur.), 9th Edition, Council of Europe: Strasbourg, France, 2018.
  28. 28.↵
    1. Tharp J. C.,
    2. Kullar R. K.,
    3. Tupps M. A.
    Designing a Microbiological Monitoring Program for Compounding Facilities. Am. J. Health-Syst. Pharm. 2021, 78 (2), 158–167.
    OpenUrl
  29. 29.↵
    1. Boom F. A.,
    2. Brun P. P. H. L.,
    3. Bühringer S.,
    4. Touw D. J.
    Microbiological Monitoring during Aseptic Handling: Methods, Limits and Interpretation of Results. Eur. J. Pharm. Sci. 2020, 155, 105540.
    OpenUrlPubMed
  30. 30.↵
    European Medicines Agency. Edotreotide (SOMAKIT TOC): EPAR—Product Information. https://www.ema.europa.eu/en/documents/product-information/somakit-toc-epar-product-information_en.pdf (accessed Apr 21, 2021).
  31. 31.↵
    PSMA-11 (ILLUMETTM) package insert. ANMI (TELIX Pharmaceuticals); 2019.
  32. 32.↵
    1. Ben Azzouna R.,
    2. Alshoukr F.,
    3. Leygnac S.,
    4. Guez A.,
    5. Gonzalez W.,
    6. Rousseaux O.,
    7. Guilloteau D.,
    8. Le Guludec D.
    A New (68)Ga Anionic Concentration and Purification Method for Automated Synthesis of [(68)Ga]-DOTA or NODAGA Conjugated Peptides in High Radiochemical Purity. J. Labelled Compd. Radiopharm. 2015, 58 (10), 403–410.
    OpenUrl
  33. 33.↵
    1. Kleynhans J.,
    2. Rubow S.,
    3. Le Roux J.,
    4. Marjanovic-Painter B.,
    5. Zeevaart J. R.,
    6. Ebenhan T.
    Production of [68Ga]Ga-PSMA: Comparing a Manual Kit-Based Method with a Module-Based Automated Synthesis Approach. J. Labelled Compd. Radiopharm. 2020, 63 (13), 553–563.
    OpenUrl
  34. 34.↵
    1. Calderoni L.,
    2. Farolfi A.,
    3. Pianori D.,
    4. Maietti E.,
    5. Cabitza V.,
    6. Lambertini A.,
    7. Ricci G.,
    8. Telo S.,
    9. Lodi F.,
    10. Castellucci P.,
    11. Fanti S.
    Evaluation of an Automated Module Synthesis and a Sterile Cold Kit–Based Preparation of 68Ga-PSMA-11 in Patients with Prostate Cancer. J. Nucl. Med. 2020, 61 (5), 716–722.
    OpenUrlAbstract/FREE Full Text
  35. 35.↵
    1. Vis R.,
    2. Lavalaye J.,
    3. van de Garde E. M.
    GMP-Compliant 68Ga Radiolabelling in a Conventional Small-Scale Radiopharmacy: A Feasible Approach for Routine Clinical Use. EJNMMI Res. 2015, 5 (1), 27.
    OpenUrlCrossRefPubMed
  36. 36.↵
    1. Chakravarty R.,
    2. Chakraborty S.,
    3. Radhakrishnan E. R.,
    4. Kamaleshwaran K.,
    5. Shinto A.,
    6. Dash A.
    Clinical 68Ga-PET: Is Radiosynthesis Module an Absolute Necessity? Nucl. Med. Biol. 2017, 46, 1–11.
    OpenUrl
  37. 37.↵
    1. Todde S.,
    2. Peitl P. K.,
    3. Elsinga P.,
    4. Koziorowski J.,
    5. Ferrari V.,
    6. Ocak E. M.,
    7. Hjelstuen O.,
    8. Patt M.,
    9. Mindt T. L.,
    10. Behe M.
    Guidance on Validation and Qualification of Processes and Operations Involving Radiopharmaceuticals. EJNMMI Radiopharm. Chem. 2017, 2 (1), 8.
    OpenUrl
  38. 38.↵
    1. Sirna V.,
    2. Garaboldi L.,
    3. Papi S.,
    4. Martano L.,
    5. Omodeo Salè E.,
    6. Paganelli G.,
    7. Chinol M..
    Testing of Microbial Contamination during the Preparation of the Radiocompound [90Y]DOTATOC for Clinical Trials: A Process Validation Study by Media Fill Approach. Q. J. Nucl. Med. Mol. Imaging 2010, 54 (5), 553–559.
    OpenUrlPubMed
  39. 39.↵
    1. Urbano N.,
    2. Modoni S.,
    3. Schillaci O.
    Media Fill Test for Validation of Autologous Leukocytes Separation and Labelling by 99mTc-HmPAO. Nucl. Med. Biol. 2013, 40 (1), 104–108.
    OpenUrlPubMed
  40. 40.↵
    1. Webster E.,
    2. Zigler S.,
    3. Burger J.,
    4. Bingham D.
    A Review of the Implementation of a Media Fill Simulation Program That Complies with FDA Regulation. J. Nucl. Med. 2015, 56 (Suppl. 3), 331.
    OpenUrlFREE Full Text
  41. 41.↵
    1. Sammartano A.,
    2. Migliari S.,
    3. Scarlattei M.,
    4. Baldari G.,
    5. Ruffini L.
    Validation of Quality Control Parameters of Cassette-Based Gallium-68-DOTA-Tyr3-Octreotate Synthesis. Indian J. Nucl. Med. 2020, 35 (4), 291–298.
    OpenUrl
  42. 42.↵
    1. Kawamura K.,
    2. Abe H.
    A Novel Approach to the Statistical Evaluation of Media Fill Tests by the Difference from No Contamination Data. PDA J. Pharm. Sci. Technol. 2004, 58 (6), 309–320.
    OpenUrlAbstract/FREE Full Text
  43. 43.↵
    1. Moody C. A.,
    2. Eckel S. F.,
    3. Amerine L. B.
    Evaluating the Sensitivity of a Media-Fill Challenge Test under Various Situations as a Reliable Method for Recommended Aseptic Technique Competency Assessment. J. Pharm. Technol. 2016, 32 (2), 47–53.
    OpenUrlCrossRef
  44. 44.↵
    1. Sigward E.,
    2. Fourgeaud M.,
    3. Vazquez R.,
    4. Guerrault-Moro M.-N.,
    5. Brossard D.,
    6. Crauste-Manciet S.
    Aseptic Simulation Test Challenged with Microorganisms for Validation of Pharmacy Operators. Am. J. Health-Syst. Pharm. 2012, 69 (14), 1218–1224.
    OpenUrlAbstract/FREE Full Text
  45. 45.↵
    1. Larson E.
    Handwashing and Skin Physiologic and Bacteriologic Aspects. Infect. Control Hosp. Epidemiol. 1985, 6 (1), 14–23.
    OpenUrl
  46. 46.↵
    1. Gillings N.,
    2. Hjelstuen O.,
    3. Ballinger J.,
    4. et al.
    Guideline on Current Good Radiopharmacy Practice (cGRPP) for the Small-Scale Preparation of Radiopharmaceuticals. EJNMMI Radiopharm. Chem. 2021, 6 (1), 8.
    OpenUrl
  47. 47.↵
    International Organization for Standardization, ISO 13408-1:2008 Aseptic Processing of Health Care Products. Part 1: General Requirements. https://www.iso.org/obp/ui/#iso:std:iso:13408:-1:ed-2:v1:en, accessed 2020/03/06 (accessed Apr 22, 2021).
  48. 48.↵
    Heads of Medicines Agencies. Galli Ad 0.74–1.85 GBq radionuclide generator: Product Information. https://mri.cts-mrp.eu/human/downloads/DK_H_2690_001_FinalSPC.pdf (accessed April 21, 2021).
  49. 49.↵
    Heads of Medicines Agencies. GalliaPharm 0.74–1.85 GBq radionuclide generator: Product Information. https://mri.cts-mrp.eu/download/DK_H_2294_001_FinalPI.pdf (accessed April 21, 2021).
  50. 50.↵
    European Commission, EudraLex—The Rules Governing Medicinal products in the European Union, Volume 4. Good Manufacturing Practice for Medicinal products for Human and Veterinary Use, Annex 1, Manufacture of Sterile Medicinal products. European Commission: Brussels, 2008. https://ec.europa.eu/health/sites/health/files/files/eudralex/vol-4/2008_11_25_gmp-an1_en.pdf, (accessed April 19, 2021).
  51. 51.↵
    1. Kastango E. S.
    Challenging Our Aseptic Skills Using More-Rigorous Media-Fill Tests. Am. J. Health-Syst. Pharm. 2012, 69 (14), 1197–1197.
    OpenUrlFREE Full Text
  52. 52.↵
    Pharmaceutical Inspection Convention/Cooperation Scheme (PIC/S), PIC/S Guide to Good Practices for the Preparation of Medicinal Products in Healthcare Establishments. https://picscheme.org/docview/3443 (accessed April 22, 2021).
  53. 53.↵
    U.S. Pharmacopeial Convention, General Chapter <797> Pharmaceutical Compounding—Sterile Preparations. In USP 40—NF 35, USP: Rockville, MD, 2017; pp 683–727.
  54. 54.↵
    French Good Manufacturing Practices for Hospital and Community Pharmacies (Bonnes Pratiques de Préparation). https://ansm.sante.fr/uploads/2020/10/26/20201026-bonnes-pratiques-de-preparation.pdf (accessed April 22, 2021).
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 76 (5)
PDA Journal of Pharmaceutical Science and Technology
Vol. 76, Issue 5
September/October 2022
  • Table of Contents
  • Index by Author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Tailored Media-Fill Test Protocols Inspired by 68Ga Kit-Based Radiopharmaceuticals
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
4 + 4 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Tailored Media-Fill Test Protocols Inspired by 68Ga Kit-Based Radiopharmaceuticals
Charlotte Donzé, Léa Rubira, Pierre Olivier Kotzki, Emmanuel Deshayes, Cyril Fersing
PDA Journal of Pharmaceutical Science and Technology Sep 2022, 76 (5) 416-433; DOI: 10.5731/pdajpst.2021.012657

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Tailored Media-Fill Test Protocols Inspired by 68Ga Kit-Based Radiopharmaceuticals
Charlotte Donzé, Léa Rubira, Pierre Olivier Kotzki, Emmanuel Deshayes, Cyril Fersing
PDA Journal of Pharmaceutical Science and Technology Sep 2022, 76 (5) 416-433; DOI: 10.5731/pdajpst.2021.012657
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Conflict of Interest Declaration
    • Appendix 1: Evaluation Form
    • Appendix 2: List of Kit Contents
    • Appendix 3: Detailed MFT Protocols
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Mechanical Container Closure Integrity Test: A Method for Cartridge Systems
  • A Container Closure Integrity Test Method for Vials Stored at Cryogenic Conditions Using Headspace Oxygen Analysis
  • Best Practices for Microbial Challenge In-Use Studies to Evaluate the Microbial Growth Potential of Parenteral Biological Products; Industry and Regulatory Considerations
Show more Technology/Application

Similar Articles

Keywords

  • Media-fill test
  • Radiopharmacy
  • Good radiopharmacy practices
  • Sterile compounding
  • 68Ga radiolabeling
  • Operators qualification

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire