Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleTechnology/Application

Microbial Contamination in Water Systems

Fritz Röder and Tim Sandle
PDA Journal of Pharmaceutical Science and Technology September 2022, 76 (5) 434-443; DOI: https://doi.org/10.5731/pdajpst.2021.012636
Fritz Röder
1Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: Fritz.roeder@merckgroup.com
Tim Sandle
2Bio Products Laboratory Limited, Dagger Lane, Elstree Herts, WD6 3BX U.K.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Tamames J.,
    2. Abellan J. J.,
    3. Pignatelli M.,
    4. Camacho A.,
    5. Moya A.
    Environmental Distribution of Prokaryotic Taxa. BMC Microbiol. 2010, 10 (1), 85
    OpenUrlCrossRefPubMed
  2. 2.↵
    1. Vaz-Moreira I.,
    2. Egas C.,
    3. Nunes O. C.,
    4. Manaia C. M.
    Bacterial Diversity from the Source to the Tap: A Comparative Study Based on 16S rRNA gene-DGGE and Culture-Dependent Methods. FEMS Microbiol. Ecol. 2013, 83 (2), 361–374.
    OpenUrlCrossRefPubMed
  3. 3.↵
    Parenteral Drug Association Inc. Technical Report No. 69: Bioburden and Biofilm Management in Pharmaceutical Manufacturing Operations; Bethesda, MD, 2015.
  4. 4.↵
    1. Sandle T.
    Characterizing the Microbiota of a Pharmaceutical Water System-A Metadata Study. SOJ Microbiol. Infect. Dis. 2015, 3 (2), 1–8.
    OpenUrl
  5. 5.↵
    1. Joret J. C.,
    2. Mennecart V.,
    3. Robert C.,
    4. Compagnon B.,
    5. Cervantes P.
    Inactivation of Indigenous Bacteria in Water by Ozone and Chlorine. Water Sci. Technol. 1997, 35 (11-12), 81–86.
    OpenUrlAbstract/FREE Full Text
  6. 6.↵
    1. Wingender J.,
    2. Neu T. R.,
    3. Flemming H.-C.
    1. Wingender J.,
    2. Neu T. R.,
    3. Flemming H.-C.
    What Are Bacterial Extracellular Polymeric Substances? In Microbial Extracellular Polymeric Substances; Wingender J., Neu T. R., Flemming H.-C., Eds.; SpringerVerlag: Berlin Heidelberg, 1999; pp 1–19.
  7. 7.↵
    1. Sandle T.
    Bacterial Adhesion: An Introduction. Journal of Validation Technology 2013, 19 (2), 1–10.
    OpenUrl
  8. 8.↵
    1. Favero M. S.,
    2. Carson L. A.,
    3. Bond W. W.,
    4. Petersen N. J.
    Pseudomonas aeruginosa: Growth in Distilled Water from Hospitals. Science 1971, 173 (3999), 836–838.
    OpenUrlAbstract/FREE Full Text
  9. 9.↵
    1. Momba M. B.,
    2. Makala N.
    Comparing the Effect of Various Pipe Materials on Biofilm Formation in Chlorinated and Combined Chlorine-Chloraminated Water Systems. Water SA 2004, 30 (2), 175–182.
    OpenUrl
  10. 10.↵
    1. Pedersen K.
    Biofilm Development on Stainless Steel and PVC Surfaces in Drinking Water. Water Res. 1990, 24 (2), 239–243.
    OpenUrlCrossRef
  11. 11.↵
    1. Sandle T.
    (2021) Limited Ability: Understan-ding the Concerns Around Microbial Methods and Sampling. IVT Network Web site. https://www.ivtnetwork.com/article/limited-ability-understanding-concerns-around-microbial-methods-and-sampling (accessed December 21, 2021).
  12. 12.↵
    1. Maquelin K.,
    2. Kirschner C.,
    3. Choo-Smith L.-P.,
    4. van den Braak N.,
    5. Endtz H. P.,
    6. Naumann D.,
    7. Puppels G. J.
    Identification of Medically Relevant Microorganisms by Vibrational Spectroscopy. J. Microbiol. Methods 2002, 51 (3), 255–271.
    OpenUrlCrossRefPubMedWeb of Science
  13. 13.↵
    1. Choudhury B.,
    2. Portugal S.,
    3. Mastanaiah N.,
    4. Johnson J. A.,
    5. Roy S.
    Inactivation of Pseudomonas aeruginosa and Methicillin-Resistant Staphylococcus aureus in an Open Water System with Ozone Generated by a Compact, Atmospheric DBD Plasma Reactor. Sci. Rep. 2018, 8 (1), 17573.
    OpenUrlCrossRef
  14. 14.↵
    1. Giuliani G.,
    2. Ricevuti G.,
    3. Galoforo A.,
    4. Franzini M.
    Microbiological Aspects of Ozone: Bacte-ricidal Activity and Antibiotic/Antimicrobial Resistance in Bacterial Strains Treated with Ozone. Ozone Ther. 2018, 3 (3), https://doi.org/10.4081/ozone.2018.7971.
  15. 15.↵
    1. Sandle T.
    Design and Control of Pharmaceutical Water Systems to Minimize Microbial Contamination. Pharm. Eng. 2017, 37 (4), 44–48.
    OpenUrl
  16. 16.↵
    1. Pelletier P. A.,
    2. du Moulin G. C.,
    3. Stottmeier K. D.
    Mycobacteria in Public Water Supplies: Comparative Resistance to Chlorine. Microbiol. Sci. 1988, 5 (5), 147–148.
    OpenUrlPubMedWeb of Science
  17. 17.↵
    1. Ridgway H. F.,
    2. Olson B. H.
    ; Chlorine Resistance Patterns of Bacteria from Two Drinking Water Distribution Systems. Appl. Environ. Microbiol. 1982, 44 (4), 972–987.
    OpenUrlAbstract/FREE Full Text
  18. 18.↵
    1. Chiao T.-H.,
    2. Clancy T. M.,
    3. Pinto A.,
    4. Xi C.,
    5. Raskin L.
    Differential Resistance of Drinking Water Bacterial Populations to Monochloramine Disinfection. Environ. Sci. Technol. 2014, 48 (7), 4038–4047.
    OpenUrlCrossRefPubMed
  19. 19.↵
    1. Wolfe R. L.
    Ultraviolet Disinfection of Potable Water. Environ. Sci. Technol. 1990, 24 (6), 768–773.
    OpenUrlCrossRef
  20. 20.↵
    1. Tong C.,
    2. Hu H.,
    3. Chen G.,
    4. Li Z.,
    5. Li A.,
    6. Zhang J.
    Chlorine Disinfectants Promote Microbial Resistance in Pseudomonas sp. Environ. Res. 2021, 199, 111296. https://doi.org/10.1016/j.envres.2021.111296.
    OpenUrl
  21. 21.↵
    1. Cai Y.,
    2. Sun T.,
    3. Li G.,
    4. An T.
    Traditional and Emerging Water Disinfection Technologies Challenging the Control of Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes. ACS EST Eng. 2021, 1 (7), 1046–1064.
    OpenUrl
  22. 22.↵
    1. Sandle T.
    Avoiding Contamination of Water Systems. The Clinical Services Journal 2013, 12 (9), 33–36.
    OpenUrl
  23. 23.↵
    Health Canada. Guidelines for Canadian Drinking Water Quality: Guideline Technical Document: Bacterial Waterborne Pathogens. Current and Emerging Organisms of Concern. Health Canada: Ottawa, ON, Canada, 2006.
  24. 24.↵
    1. Levy R. V.,
    2. Cheetham R. D.,
    3. Davis J.,
    4. Winer G.,
    5. Hart F. L.
    Novel Method for Studying the Public Health Significance of Macroinvertebrates Occurring in Potable Water. Appl. Environ. Microbiol. 1984, 47 (5), 889–894.
    OpenUrlAbstract/FREE Full Text
  25. 25.↵
    1. Berry D.,
    2. Xi C.,
    3. Raskin L.
    Microbial Ecology of Drinking Water Distribution Systems. Curr. Opin. Biotechnol. 2006, 17 (3), 297–302.
    OpenUrlCrossRefPubMedWeb of Science
  26. 26.↵
    1. Méndez-Vilas A.
    1. Yurudu N. O. S.
    A Short Methodology Review: for the Evaluation of Biocides against Biofilms in Recirculating Water Systems. In Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education; Méndez-Vilas A., Ed.; Formatex Research Center: Badajoz, Spain, 2013; pp 3–10.
  27. 27.↵
    1. Codony F.,
    2. Morató J.,
    3. Mas J.
    Role of Discontinuous Chlorination on Microbial Production by Drinking Water Biofilms. Water Res. 2005, 39 (9), 1896–1906.
    OpenUrlCrossRefPubMed
  28. 28.↵
    1. Kuchta J. M.,
    2. States S. J.,
    3. McGlaughlin J. E.,
    4. Overmeyer J. H.,
    5. Wadowsky R. M.,
    6. McNamara A. M.,
    7. Wolford R. S.,
    8. Yee R. B.
    Enhanced Chlorine Resistance of Tap Water Adapted Legionella pneumophila as Compared with Agar Medium Passed Strains. Appl. Environ. Microbiol. 1985, 50 (1), 21–26.
    OpenUrlAbstract/FREE Full Text
  29. 29.↵
    European Medicines Agency. EMA Questions and Answers on Production of Water for Injections by Non-Distillation Methods—Reverse Osmosis and Biofilms and Control Strategies. EMA Web site. https://www.ema.europa.eu/en/documents/other/questions-answers-production-water-injections-non-distillation-methods-reverse-osmosis-biofilms_en.pdf (accessed October 2, 2021).
  30. 30.↵
    1. Schäefer A. I.,
    2. Fane A. G.
    1. Cohen Y.,
    2. Choi J. Y.,
    3. Rahardianto A.
    Water Reclamation, Remediation, and Cleaner Production with Nanofiltration. In Nanofiltration: Principles, Applications, and New Materials, 2nd ed.; Schäefer A. I., Fane A. G., Eds.; Wiley, Germany, 2021; pp 451–497.
  31. 31.↵
    U.S. Pharmacopeial Convention. General Chapter <1231>: Water for Pharmaceutical Purposes. In USP 42—NF 37, USP: Rockville, MD, 2019.
  32. 32.
    1. Röder F.
    Pharmawasser—Inhaltsstoffe, Grenzwerte und Anlagenkonzepte. Maas & Peither Publishing, 2017; pp 47–48.
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 76 (5)
PDA Journal of Pharmaceutical Science and Technology
Vol. 76, Issue 5
September/October 2022
  • Table of Contents
  • Index by Author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Microbial Contamination in Water Systems
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
5 + 13 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Microbial Contamination in Water Systems
Fritz Röder, Tim Sandle
PDA Journal of Pharmaceutical Science and Technology Sep 2022, 76 (5) 434-443; DOI: 10.5731/pdajpst.2021.012636

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Microbial Contamination in Water Systems
Fritz Röder, Tim Sandle
PDA Journal of Pharmaceutical Science and Technology Sep 2022, 76 (5) 434-443; DOI: 10.5731/pdajpst.2021.012636
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Microbial Ecology of Pharmaceutical Water Systems
    • Antimicrobial Water Treatment
    • Ozone
    • Chlorine
    • Chloramines
    • UV Light
    • Heat
    • Protective Mechanisms
    • Implementation of a Sanitization Concept for a Water System
    • Reliable Operation of Water Systems
    • In Case of Microbial Proliferation inside the System
    • Summary
    • Conflict of Interest Declaration
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Mechanical Container Closure Integrity Test: A Method for Cartridge Systems
  • A Container Closure Integrity Test Method for Vials Stored at Cryogenic Conditions Using Headspace Oxygen Analysis
  • Best Practices for Microbial Challenge In-Use Studies to Evaluate the Microbial Growth Potential of Parenteral Biological Products; Industry and Regulatory Considerations
Show more Technology/Application

Similar Articles

Keywords

  • Water
  • sanitization
  • GMP
  • Biofilm
  • Microbiology
  • Purified water
  • water for injection

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire