Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleTechnology/Application

Using Sensitivity Analysis to Simplify the Virus Safety Factor Calculation in the Manufacture of Biopharmaceuticals

Jennifer Anderson, Christopher Thompson, Kang Cai, Joshua Orchard and Gisela Ferreira
PDA Journal of Pharmaceutical Science and Technology January 2023, 77 (1) 27-37; DOI: https://doi.org/10.5731/pdajpst.2021.012674
Jennifer Anderson
1Purification Process Sciences, Biopharmaceutical Development, AstraZeneca, Gaithersburg, MD, USA; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christopher Thompson
2Data Science and Modelling, Biopharmaceutical Development, AstraZeneca, Gaithersburg, MD, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kang Cai
1Purification Process Sciences, Biopharmaceutical Development, AstraZeneca, Gaithersburg, MD, USA; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Joshua Orchard
1Purification Process Sciences, Biopharmaceutical Development, AstraZeneca, Gaithersburg, MD, USA; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gisela Ferreira
1Purification Process Sciences, Biopharmaceutical Development, AstraZeneca, Gaithersburg, MD, USA; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: gisela.ferreira@astrazeneca.com
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Zhang J.
    Mammalian Cell Culture for Biopharmaceutical Production. In Manual of Industrial Microbiology and Biotechnology; ASM Press: Washington, DC, 2010; pp 157–178.
  2. 2.↵
    International Conference for Harmonisation, Quality Guideline Q5A(R1): Viral Safety Evaluation of Biotechnology Products Derived from Cell Lines of Human or Animal Origin. ICH Geneva, 1997.
  3. 3.↵
    Committee for Proprietary Medicinal Products. Note for Guidance on Virus Validation Studies: The Design, Contribution, and Interpretation of Studies Validating the Inactivation and Removal of Viruses, Revised; BWP/268/95; EMA: London, 1996.
  4. 4.↵
    Committee for Proprietary Medicinal Products. Guideline on Virus Safety Evaluation of Biotechnological Investigational Medicinal Products; EMEA/CHMP/BWP/398498/2005; EMA: London, 2009.
  5. 5.↵
    U.S. Pharmacopeial Convention. General Chapter <1050.1> Design, Evaluation, and Characterization of Viral Clearance Procedures. In USP 40—NF 35, USP: Rockville, MD, 2017.
  6. 6.↵
    1. Shukla A. A.,
    2. Aranha H.
    Viral Clearance for Biopharmaceutical Downstream Processes. Pharm. Bioprocess. 2015, 3 (2), 127–138.
    OpenUrl
  7. 7.↵
    1. Shepherd A. J.,
    2. Wilson N. J.,
    3. Smith K. T.
    Characterisation of Endogenous Retrovirus in Rodent Cell Lines Used for Production of Biologicals. Biologicals 2003, 31 (4), 251–260.
    OpenUrlCrossRefPubMedWeb of Science
  8. 8.↵
    1. Anderson K. P.,
    2. Low M.-A. L.,
    3. Lie Y. S.,
    4. Keller G.-A.,
    5. Dinowitz M.
    Endogenous Origin of Defective Retroviruslike Particles from a Recombinant Chinese Hamster Ovary Cell Line. Virology 1991, 181 (1), 305–311.
    OpenUrlPubMed
  9. 9.↵
    1. Anderson K. P.,
    2. Lie Y. S.,
    3. Low M. A.,
    4. Williams S. R.,
    5. Wurm F. M.,
    6. Dinowitz M.
    Defective Endogenous Retrovirus-like Sequences and Particles of Chinese Hamster Ovary Cells. Dev. Biol. Stand. 1991, 75, 123–132.
    OpenUrlPubMed
  10. 10.↵
    1. Sipple P.,
    2. Nguyen T.,
    3. Patel K.,
    4. Jaffe N.,
    5. Chen Y.,
    6. Khetan A.
    Suitability of a Generic Virus Safety Evaluation for Monoclonal Antibody Investigational New Drug Applications. Biotechnol. Prog. 2019, 35 (5), e2850.
    OpenUrl
  11. 11.↵
    R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria; 2020. https://www.R-project.org/.
  12. 12.
    1. Brorson K.,
    2. Krejci S.,
    3. Lee K.,
    4. Hamilton E.,
    5. Stein K.,
    6. Xu Y.
    Bracketed Generic Inactivation of Rodent Retroviruses by Low pH Treatment for Monoclonal Antibodies and Recombinant Proteins. Biotechnol. Bioeng. 2003, 82 (3), 321–329.
    OpenUrlCrossRefPubMed
  13. 13.
    1. Chen Q.
    Viral Clearance Using Traditional, Well-Understood Unit Operations (Session I): Low-pH Inactivation. PDA J. Pharm. Sci. Technol. 2014, 68 (1), 17–22.
    OpenUrlFREE Full Text
  14. 14.
    1. Durno L.,
    2. Tounekti O.
    Viral Inactivation: Low pH and Detergent. PDA J. Pharm. Sci. Technol. 2015, 69 (1), 163–172.
    OpenUrlFREE Full Text
  15. 15.
    1. Ma J.,
    2. Roush D.
    Session 1.1: Viral Clearance Using Traditional, Well-Understood Unit Operations: Low pH and Detergent Viral Inactivation. PDA J. Pharm. Sci. Technol. 2016, 70 (5), 410–416.
    OpenUrlFREE Full Text
  16. 16.
    1. Chinniah S.,
    2. Hinckley P.,
    3. Connell-Crowley L.
    Characterization of Operating Parameters for XMuLV Inactivation by Low pH Treatment. Biotechnol. Prog. 2016, 32 (1), 89–97.
    OpenUrl
  17. 17.
    1. Mattila J.,
    2. Clark M.,
    3. Liu S.,
    4. Pieracci J.,
    5. Gervais T. R.,
    6. Wilson E.,
    7. Galperina O.,
    8. Li X.,
    9. Roush D.,
    10. Zoeller K.,
    11. Brough H.,
    12. Simpson-Platre C.
    Retrospective Evaluation of Low-pH Viral Inactivation and Viral Filtration Data from a Multiple Company Collaboration. PDA J. Pharm. Sci. Technol. 2016, 70 (3), 293–299.
    OpenUrlAbstract/FREE Full Text
  18. 18.
    ASTM International. ASTM E2888–12 Standard Practice for Process for Inactivation of Rodent Retrovirus by pH. ASTM: West Conshocken, PA, 2012.
  19. 19.
    ASTM International. ASTM E3042-16 Standard Practice for Process Step to Inactivate Rodent Retrovirus with Triton X-100 Treatment. ASTM: West Conshohocken, PA, 2016.
  20. 20.
    1. Conley L.,
    2. Tao Y.,
    3. Henry A.,
    4. Koepf E.,
    5. Cecchini D.,
    6. Pieracci J.,
    7. Ghose S.
    Evaluation of Eco-Friendly Zwitterionic Detergents for Enveloped Virus Inactivation. Biotechnol. Bioeng. 2017, 114 (4), 813–820.
    OpenUrl
  21. 21.
    1. Curtis S.,
    2. Lee K.,
    3. Blank G. S.,
    4. Brorson K.,
    5. Xu Y.
    Generic/Matrix Evaluation of SV40 Clearance by Anion Exchange Chromatography in Flow-through Mode. Biotechnol. Bioeng. 2003, 84 (2), 179–186.
    OpenUrlPubMed
  22. 22.
    1. Strauss D. M.,
    2. Lute S.,
    3. Tebaykina Z.,
    4. Frey D. D.,
    5. Ho C.,
    6. Blank G. S.,
    7. Brorson K.,
    8. Chen Q.,
    9. Yang B.
    Understanding the Mechanism of Virus Removal by Q Sepharose Fast Flow Chromatography during the Purification of CHO-Cell Derived Biotherapeutics. Biotechnol. Bioeng. 2009, 104 (2), 371–380.
    OpenUrlPubMed
  23. 23.
    1. Strauss D. M.,
    2. Cano T.,
    3. Cai N.,
    4. Delucchi H.,
    5. Plancarte M.,
    6. Coleman D.,
    7. Blank G. S.,
    8. Chen Q.,
    9. Yang B.
    Strategies for Developing Design Spaces for Viral Clearance by Anion Exchange Chromatography during Monoclonal Antibody Production. Biotechnol. Prog. 2010, 26 (3), 750–755.
    OpenUrlPubMed
  24. 24.
    1. Connell-Crowley L.,
    2. Larimore E. A.,
    3. Gillespie R.
    Using High Throughput Screening to Define Virus Clearance by Chromatography Resins. Biotechnol. Bioeng. 2013, 110 (7), 1984–1994.
    OpenUrl
  25. 25.
    1. Roush D.
    Viral Clearance Using Traditional, Well-Understood Unit Operations: Session 1.2. Anion Exchange Chromatography; and Session 1.3. Protein A Chromatography. PDA J. Pharm. Sci. Technol. 2015, 69 (1), 154–162.
    OpenUrlFREE Full Text
  26. 26.
    1. Cai K.,
    2. Anderson J.,
    3. Orchard J. D.,
    4. Afdahl C. D.,
    5. Dickson M.,
    6. Li Y.
    Virus Removal Robustness of Ion Exchange Chromatography. Biologicals 2019, 58, 28–34.
    OpenUrl
  27. 27.
    1. Connell-Crowley L.,
    2. Nguyen T.,
    3. Bach J.,
    4. Chinniah S.,
    5. Bashiri H.,
    6. Gillespie R.,
    7. Moscariello J.,
    8. Hinckley P.,
    9. Dehghani H.,
    10. Vunnum S.,
    11. Vedantham G.
    Cation Exchange Chromatography Provides Effective Retrovirus Clearance for Antibody Purification Processes. Biotechnol. Bioeng. 2012, 109 (1), 157–165.
    OpenUrlPubMed
  28. 28.
    1. Miesegaes G.,
    2. Lute S.,
    3. Brorson K.
    Analysis of Viral Clearance Unit Operations for Monoclonal Antibodies. Biotechnol. Bioeng. 2010, 106 (2), 238–246.
    OpenUrlPubMed
  29. 29.
    1. Gefroh E.,
    2. Dehghani H.,
    3. McClure M.,
    4. Connell-Crowley L.,
    5. Vedantham G.
    Use of MMV as a Single Worst-Case Model Virus in Viral Filter Validation Studies. PDA J. Pharm. Sci. Technol. 2014, 68 (3), 297–311.
    OpenUrlAbstract/FREE Full Text
  30. 30.
    1. Chen D.
    Viral Clearance Using Traditional, Well-Understood Unit Operations (Session I): Virus-Retentive Filtration. PDA J. Pharm. Sci. Technol. 2014, 68 (1), 38–50.
    OpenUrlFREE Full Text
  31. 31.
    1. Stuckey J.,
    2. Strauss D.,
    3. Venkiteshwaran A.,
    4. Gao J.,
    5. Luo W.,
    6. Quertinmont M.,
    7. O'Donnell S.,
    8. Chen D.
    A Novel Approach to Achieving Modular Retrovirus Clearance for a Parvovirus Filter. Biotechnol. Prog. 2014, 30 (1), 79–85.
    OpenUrlCrossRef
  32. 32.
    1. Chen Q.,
    2. Chen D.
    Viral Clearance of Traditional Unit Operations: Virus-Retentive Filtration. PDA J. Pharm. Sci. Technol. 2015, 69 (1), 142–153.
    OpenUrlFREE Full Text
  33. 33.
    Millipore. Virus Retention Performance of Viresolve Pro Devices under a Range of Processing Conditions. Application Note, 2019.
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 77 (1)
PDA Journal of Pharmaceutical Science and Technology
Vol. 77, Issue 1
January/February 2023
  • Table of Contents
  • Index by Author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Using Sensitivity Analysis to Simplify the Virus Safety Factor Calculation in the Manufacture of Biopharmaceuticals
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
6 + 14 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Using Sensitivity Analysis to Simplify the Virus Safety Factor Calculation in the Manufacture of Biopharmaceuticals
Jennifer Anderson, Christopher Thompson, Kang Cai, Joshua Orchard, Gisela Ferreira
PDA Journal of Pharmaceutical Science and Technology Jan 2023, 77 (1) 27-37; DOI: 10.5731/pdajpst.2021.012674

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Using Sensitivity Analysis to Simplify the Virus Safety Factor Calculation in the Manufacture of Biopharmaceuticals
Jennifer Anderson, Christopher Thompson, Kang Cai, Joshua Orchard, Gisela Ferreira
PDA Journal of Pharmaceutical Science and Technology Jan 2023, 77 (1) 27-37; DOI: 10.5731/pdajpst.2021.012674
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Methods
    • Results and Discussion
    • Conclusions
    • Conflict of Interest Declaration
    • Acknowledgements
    • Footnotes
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Mechanical Container Closure Integrity Test: A Method for Cartridge Systems
  • A Container Closure Integrity Test Method for Vials Stored at Cryogenic Conditions Using Headspace Oxygen Analysis
  • Best Practices for Microbial Challenge In-Use Studies to Evaluate the Microbial Growth Potential of Parenteral Biological Products; Industry and Regulatory Considerations
Show more Technology/Application

Similar Articles

Keywords

  • CHO
  • Virus safety
  • Virus Clearance
  • Modular virus clearance
  • Virus safety factor
  • Sensitivity analysis

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire