Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleResearch

Laser Measurement and Numerical Simulation of Elastomer Stopper Motion during High-Altitude Shipping of Pharmaceutical Syringes

Kirk Roffi, Naveed Siddiqui, Samantha Portelli, Divya Sharma, Jennifer Juneau, Parag Kolhe and Advait Badkar
PDA Journal of Pharmaceutical Science and Technology November 2023, 77 (6) 449-471; DOI: https://doi.org/10.5731/pdajpst.2022.012809
Kirk Roffi
Pharmaceutical Research and Development, Pfizer, 1 Burtt Rd, Andover, MA 01810, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: kirk.roffi@pfizer.com
Naveed Siddiqui
Pharmaceutical Research and Development, Pfizer, 1 Burtt Rd, Andover, MA 01810, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Samantha Portelli
Pharmaceutical Research and Development, Pfizer, 1 Burtt Rd, Andover, MA 01810, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Divya Sharma
Pharmaceutical Research and Development, Pfizer, 1 Burtt Rd, Andover, MA 01810, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jennifer Juneau
Pharmaceutical Research and Development, Pfizer, 1 Burtt Rd, Andover, MA 01810, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Parag Kolhe
Pharmaceutical Research and Development, Pfizer, 1 Burtt Rd, Andover, MA 01810, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Advait Badkar
Pharmaceutical Research and Development, Pfizer, 1 Burtt Rd, Andover, MA 01810, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Badkar A.,
    2. Wolf A.,
    3. Bohack L.,
    4. Kolhe P.
    Development of Biotechnology Products in Pre-Filled Syringes: Technical Considerations and Approaches. AAPS PharmSciTech 2011, 12 (2), 564–572.
    OpenUrlPubMed
  2. 2.↵
    1. Chooi W. H.,
    2. Ng P. W.,
    3. Hussain Z.,
    4. Ming L. C.,
    5. Ibrahim B.,
    6. Koh D.
    Vaccine Contamination: Causes and Control. Vaccine 2022, 40 (12), 1699–1701.
    OpenUrl
  3. 3.↵
    1. Malik P.,
    2. Rangel M.,
    3. VonBriesen T.
    Why the Utilization of Ready-to-Administer Syringes during High-Stress Situations is More Important than Ever. J. Infusion Nurs. 2022, 45 (1), 27–36.
    OpenUrl
  4. 4.↵
    1. Ludwin K.,
    2. Filipiak K. J.,
    3. Jaguszewski M.,
    4. Pruc M.,
    5. Paprocki M.,
    6. Smereka J.,
    7. Szarpak L.,
    8. Dabrowski M.,
    9. Czekajlo M.
    Place of Prefilled Syringes in COVID-19 Patient Based on Current Evidence. Am. J. Emerg. Med. 2021, 39, 234–235.
    OpenUrl
  5. 5.↵
    1. Sacha G.,
    2. Rogers J. A.,
    3. Miller R. L.
    Pre-Filled Syringes: A Review of the History, Manufacturing and Challenges. Pharm. Dev. Technol. 2015, 20 (1), 1–11.
    OpenUrl
  6. 6.↵
    ASTM International, ASTM D6653/D6653M-01 Materials, Standard Test Methods for Determining the Effects of High Altitude Packaging Systems by Vacuum Method. ASTM: West Conshohocken, PA, 2010.
  7. 7.↵
    1. Kinney S. D.,
    2. Wagner A.,
    3. Phillips C. W.
    A Rational Approach to Determining the Maximum Allowable Gas Bubble inside a Pre-Filled Syringe to Minimize Stopper Movement and Protect Sterility. Drug Delivery Technol. 2009, 9 (2), 42–47.
    OpenUrl
  8. 8.↵
    1. Mehta S. B.,
    2. Cook J.,
    3. Liu W.,
    4. Brisbane C. B.
    Risk Mitigation of Plunger-Stopper Displacement under Low Atmospheric Pressure by Establishing Design Space for Filling-Stoppering Process of Prefilled Syringes: A Design of Experiment (DoE) Approach. J. Pharm. Sci. 2022, 111 (7), 2038–2048.
    OpenUrl
  9. 9.↵
    1. Baumer S.
    1. Minami K.
    Optical Plastics. In Handbook of Plastic Optics, 2nd ed.; Baumer S., Ed.; Wiley-VCH: Weinheim, 2011; pp 123–160.
  10. 10.↵
    1. Vosselman G.
    1. Maas H.-G.
    Airborne and Terrestrial Laser Scanning; Vosselman G.; Maas H.-G., Eds.; Whittles Publishing: Dunbeath, Scotland, 2010.
  11. 11.↵
    1. Liu J.,
    2. Ronk M.,
    3. Fujimori K.,
    4. Lee H.,
    5. Nashed-Samuel Y.
    Analysis of Silicone Oil in Prefilled Syringes and Biopharmaceutical Drug Products Using High-Performance Liquid Chromatography. AAPS PharmSciTech 2021, 22 (2), 75.
    OpenUrl
  12. 12.↵
    1. Lorenz B.,
    2. Krick B. A.,
    3. Rodriguez N.,
    4. Sawyer W. G.,
    5. Mangiagalli P.,
    6. Persson B. N. J.
    Static or Breakloose Friction for Lubricated Contacts: The Role of Surface Roughness and Dewetting. J. Phys. Condens. Matter 2013, 25 (44), 445013.
    OpenUrlCrossRefPubMed
  13. 13.↵
    1. Olynyk G.
    volRevolve. MATLAB Central File Exchange. https://www.mathworks.com/matlabcentral/fileexchange/36525-volrevolve (accessed July 1, 2022).
  14. 14.↵
    1. Wilson H. B.,
    2. Turcotte L. H.,
    3. Halpern D.
    Gauss Integration with Geometric Property Applications. Advanced Mathematics and Mechanics Applications Using MATLAB; Chapman&Hall/CRC: New York, 2003.
  15. 15.↵
    1. Tsukruk V. V.,
    2. Wahl K. J.
    1. Liebmann-Vinson A.
    Physics of Friction Applied to Medical Devices. In Microstructure and Microtribology of Polymer Surfaces; Tsukruk V. V., Wahl K. J., Eds.; ACS Symposium Series 741; American Chemical Society: Washington, DC, 1999; Chapter 30.
  16. 16.↵
    1. Wen Z.-Q.,
    2. Vance A.,
    3. Vega F.,
    4. Cao X.,
    5. Eu B.,
    6. Schulthesis R.
    Distribution of Silicone Oil in Prefilled Glass Syringes Probed with Optical and Spectroscopic Methods. PDA J. Pharm. Sci. Technol. 2009, 63 (2), 149–158.
    OpenUrlAbstract/FREE Full Text
  17. 17.↵
    1. Box G. E. P.,
    2. Hunter; J. S.,
    3. Hunter W. G.
    Statistics for Experimenters: Design, Innovation, and Discovery, 2nd ed; Wiley Series in Probability and Statistics; John Wiley & Sons, Inc: Hoboken, NJ, 2005.
  18. 18.↵
    1. Montgomery D. C.
    Design and Analysis of Experiments, 8th ed; John Wiley & Sons, Inc: Hoboken, NJ, 2013., p 730.
  19. 19.↵
    1. Worden K.,
    2. Wong C. X.,
    3. Parlitz U.,
    4. Hornstein A.,
    5. Engster D.,
    6. Tjahjowidodo T.,
    7. Al-Bender F.,
    8. Rizos D. D.,
    9. Fassois S. D.
    Identification of Pre-Sliding and Sliding Friction Dynamics: Grey Box and Black-Box Models. Mech. Syst. Signal Process. 2007, 21 (1), 514–534.
    OpenUrlCrossRef
  20. 20.↵
    1. Persson B. N. J.,
    2. Prodanov N.,
    3. Krick B. A.,
    4. Rodriguez N.,
    5. Mulakaluri N.,
    6. Sawyer W. G.,
    7. Mangiagalli P.
    Elastic Contact Mechanics: Percolation of the Contact Area and Fluid Squeeze-Out. Eur. Phys. J. E: Soft Matter Biol. Phys. 2012, 35 (1), 5.
    OpenUrl
  21. 21.↵
    1. Sinha S.
    1. Zhang S. L.
    Chapter 3—Friction, Damage and Stick-Slip in the Scratching of Polymers. In Scratching of Materials and Applications; Sinha S., Ed.; Tribology and Interface Engineering Series Vol. 51; Elsevier, 2006; pp 56–84.
  22. 22.↵
    1. Loosli V.,
    2. Germershaus O.,
    3. Steinberg H.,
    4. Dreher S.,
    5. Grauschopf U.,
    6. Funke S.
    Methods to Determine the Silicone Oil Layer Thickness in Sprayed-On Siliconized Syringes. PDA J. Pharm. Sci. Technol. 2018, 72 (3), 278–297.
    OpenUrlAbstract/FREE Full Text
  23. 23.↵
    1. Werner B. P.,
    2. Schöneich C.,
    3. Winter G.
    Silicone Oil-Free Polymer Syringes for the Storage of Therapeutic Proteins. J. Pharm. Sci. 2019, 108 (3), 1148–1160.
    OpenUrl
  24. 24.↵
    1. Gjølberg T. T.,
    2. Lode H. E.,
    3. Melo G. B.,
    4. Mester S.,
    5. Probst C.,
    6. Sivertsen M. S.,
    7. Jørstad Ø. K.,
    8. Andersen J. T.,
    9. Moe M. C.
    A Silicone Oil-Free Syringe Tailored for Intravitreal Injection of Biologics. Front. Ophthalmol. 2022, 2, 882013.
    OpenUrl
  25. 25.↵
    1. Mecwan M. M.,
    2. Dong X.,
    3. Shi G. H.,
    4. Ratner B. D.
    Plasma Polymerized HMDSO Coatings for Syringes to Minimize Protein Adsorption. J. Pharm. Sci. 2021, 110 (4), 1710–1717.
    OpenUrl
  26. 26.↵
    1. Yoshino K.,
    2. Nakamura K.,
    3. Yamashita A.,
    4. Abe Y.,
    5. Iwasaki K.,
    6. Kanazawa Y.,
    7. Funatsu K.,
    8. Yoshimoto T.,
    9. Suzuki S.
    Functional Evaluation and Characterization of a Newly Developed Silicone Oil-Free Prefillable Syringe System. J. Pharm. Sci. 2014, 103 (5), 1520–1528.
    OpenUrlPubMed
  27. 27.↵
    1. Kang D.-Y.,
    2. Liou K.-H.,
    3. Chang W.-L.
    Investigating Friction as a Main Source of Entropy Generation in the Expansion of Confined Gas in a Piston-and-Cylinder Device. J. Chem. Educ. 2015, 92 (10), 1667–1671.
    OpenUrl
  28. 28.↵
    1. Hutchings I.,
    2. Shipway P.
    3—Friction. In Tribology: Friction and Wear of Engineering Materials, 2nd ed.: Butterworth-Heinemann, 2017; pp 37–77.
  29. 29.↵
    1. Liu Y. F.,
    2. Li J.,
    3. Zhang Z. M.,
    4. Hu X. H.,
    5. Zhang W. J.
    Experimental Comparison of Five Friction Models on the Same Test-Bed of the Micro Stick-Slip Motion System. Mech. Sci. 2015, 6 (1), 15–28.
    OpenUrlCrossRef
  30. 30.↵
    1. Stachowiak G. D.,
    2. Batchelor A. W.
    Engineering Tribology, 4th ed.; Elsevier, 2014.
  31. 31.↵
    1. Hutchings I.,
    2. Shipway P.
    4—Lubricants and Lubrication. In Tribology: Friction and Wear of Engineering Materials, 2nd ed.; Butterworth-Heinemann, 2017; pp 79–105.
  32. 32.↵
    1. Lewis R.,
    2. Olofsson U.
    1. Andersson S.
    4—Friction and Wear Simulation of the Wheel-Rail Interface. In Wheel-Rail Interface Handbook; Lewis R., Olofsson U., Eds.; Woodhead Publishing, 2009; pp 93–124.
  33. 33.↵
    1. Gray M. A.
    Introduction to the Simulation of Dynamics Using Simulink; CRC Press LLC: Philadelphia, PA, 2010.
  34. 34.↵
    1. Leine R.,
    2. Nijmeijer I. H.
    Modelling of Dry Friction. In Dynamics and Bifurcations of Non-Smooth Mechanical Systems; Lecture Notes in Applied and Computational Mechanics Vol. 18; Springer Berlin Heidelberg: Berlin, Heidelberg, 2004; pp 39–46.
  35. 35.↵
    1. Haessig D. A.,
    2. Friedland B.
    On the Modeling and Simulation of Friction. J. Dyn. Syst., Meas., Control 1991, 113 (3), 354–362.
    OpenUrlCrossRef
  36. 36.↵
    1. Zupančič B.,
    2. Karba R.,
    3. Atanasijevic-Kunc M.,
    4. Music J.
    Continuous Systems Modelling Education—Causal or Acausal Approach? Proceedings of the ITI 2008 30th International Conference on Information Technology Interfaces, Cavtat, Croatia, June 23–26, 2008; 2008; pp 803–808.
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 77 (6)
PDA Journal of Pharmaceutical Science and Technology
Vol. 77, Issue 6
November/December 2023
  • Table of Contents
  • Index by Author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Laser Measurement and Numerical Simulation of Elastomer Stopper Motion during High-Altitude Shipping of Pharmaceutical Syringes
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
2 + 2 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Laser Measurement and Numerical Simulation of Elastomer Stopper Motion during High-Altitude Shipping of Pharmaceutical Syringes
Kirk Roffi, Naveed Siddiqui, Samantha Portelli, Divya Sharma, Jennifer Juneau, Parag Kolhe, Advait Badkar
PDA Journal of Pharmaceutical Science and Technology Nov 2023, 77 (6) 449-471; DOI: 10.5731/pdajpst.2022.012809

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Laser Measurement and Numerical Simulation of Elastomer Stopper Motion during High-Altitude Shipping of Pharmaceutical Syringes
Kirk Roffi, Naveed Siddiqui, Samantha Portelli, Divya Sharma, Jennifer Juneau, Parag Kolhe, Advait Badkar
PDA Journal of Pharmaceutical Science and Technology Nov 2023, 77 (6) 449-471; DOI: 10.5731/pdajpst.2022.012809
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Conclusion
    • Conflict of Interest Declaration
    • Acknowledgments
    • Appendices
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Analysis of Virus Clearance for Biotechnology Manufacturing Processes from Early to Late Phase Development
  • Coring and Fragmentation of Elastomeric Needle Shield in a Pre-Filled Syringe
  • Worldwide Regulatory Reliance: Results of an Executed Chemistry, Manufacturing, and Control Post-Approval Change Pilot
Show more Research

Similar Articles

Keywords

  • Laser
  • Simulation
  • Modeling
  • Syringe
  • Shipping
  • MATLAB
  • Simulink

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire