Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleResearch

Modeling the Migration Behavior of Extractables from Mono- and Multilayer Polyolefin Films to Mathematically Predict the Concentration of Leachable Impurities in Pharmaceutical Drug Products. Part 1: Experimental Details and Modeling Experimental Results

Peter V. Mercea, Manfred Ossberger, Regina Wyrwich, Matthias Herburger, Vishal Barge, Rajendra Aluri and Valer Toşa
PDA Journal of Pharmaceutical Science and Technology January 2024, 78 (1) 3-32; DOI: https://doi.org/10.5731/pdajpst.2022.012816
Peter V. Mercea
1FABES Forschungs-GmbH, Schragenhofstr. 35, 80992 Munich, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Manfred Ossberger
1FABES Forschungs-GmbH, Schragenhofstr. 35, 80992 Munich, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Regina Wyrwich
1FABES Forschungs-GmbH, Schragenhofstr. 35, 80992 Munich, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: regina.wyrwich@fabes-online.de
Matthias Herburger
1FABES Forschungs-GmbH, Schragenhofstr. 35, 80992 Munich, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Vishal Barge
2Medicinal Sciences, Pharmaceutical Sciences Small Molecule, Pfizer Inc., 375 North Field Drive, Lake Forest, IL 60045;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rajendra Aluri
3Medicinal Sciences, Pharmaceutical Sciences Small Molecule, Pfizer Inc. SIPCOT Industrial Park, Sriperumbudur, 602117 Tamil Nadu, India; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Valer Toşa
4National Institute for Research and Development of Isotopic and Molecular Technologies, Str. Donath 67-103, 400293 Cluj-Napoca, Romania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Bourla A.
    Moonshot: Inside Pfizer’s Nine-Month Race to Make the Impossible Possible, 1st ed.; HarperCollins Publishers, 2022.
  2. 2.↵
    1. Kenley R. A.,
    2. Jenke D. R.
    Determination of Solute-Polymer Interaction Properties and Their Application to Parenteral Product Container Compatibility Evaluations. Pharm. Res. 1990, 7 (9), 911–918.
    OpenUrlPubMed
  3. 3.↵
    1. Jenke D.
    A General Assessment of the Physiochemical Factors that Influence Leachables Accumulation in Pharmaceutical Drug Products and Related Solutions. PDA J. Pharm. Sci. Technol. 2011, 85 (2), 166–176
    OpenUrl
  4. 4.↵
    1. Cruz L. A.,
    2. Jenke M. P.,
    3. Kenley R. A.,
    4. Chen M. J.,
    5. Jenke D. R.
    Influence of Solute Degradation on the Accumulation of Solutes Migrating into Solution from Polymeric Parenteral Containers. Pharm. Res. 1990, 7 (9), 967–972.
    OpenUrlPubMed
  5. 5.↵
    1. Jenke D. R.
    Solute Migration through Thin Polypropylene Blend Films. J. Appl. Polym. Sci. 1992, 44 (7), 1223–1231.
    OpenUrl
  6. 6.↵
    1. Jenke D.,
    2. Barge V. J.
    Mathematical Modeling of the Extractables Release from Multi-Layered Plastic Films Used in Drug Product Containers. J. Appl. Polym. Sci. 2015, 132 (1), 41223.
    OpenUrl
  7. 7.↵
    1. Fang L.,
    2. Zhao C.
    Modeling the Permeation Rates of Organic Migrants through a Fluoropolymer Film. PDA J. Pharm. Sci. Technol. 2019, 73 (1), 70–82.
    OpenUrlAbstract/FREE Full Text
  8. 8.↵
    1. Simoneau C.
    Joint Research Centre, Institute for Health and Consumer Protection; Simoneau C. Applicability of Generally Recognized Diffusion Models for the Estimation of Specific Migration in Support of EU Directive 2002/72/EC; Publications Office of the European Union: Luxembourg, 2010.
  9. 9.↵
    1. Simoneau C.,
    2. Brandsch R.,
    3. Dequatre C.,
    4. Mercea P.,
    5. Milana M.-R.,
    6. Störmer A.,
    7. Trier X.,
    8. Vitrac O.,
    9. Schäfer A.
    1. Hoekstra E.
    Joint Research Centre, Institute for Health and Consumer Protection; Simoneau C., Brandsch R., Dequatre C., Mercea P., Milana M.-R., Störmer A., Trier X., Vitrac O., Schäfer A. Practical Guidelines on the Application of Migration Modeling for the Estimation of Specific Migration; Hoekstra E. Ed.; JRC Science & Policy Reports: Ispra, Italy, 2015.
  10. 10.↵
    1. Hindle C.
    Polypropylene (PP). British Plastics Federation Website. https://www.bpf.co.uk/plastipedia/polymers/PP.aspx (accessed April 2022).
  11. 11.↵
    Density of Plastics: Technical Properties. Omnexus Website. https://omnexus.specialchem.com/polymer-properties/properties/density (accessed April 2022).
  12. 12.↵
    1. Mercea P. V.
    The FABES Diffusion Coefficients in Polymers Data Bank. DP-Data for Polyethylene, Polybutylene and Polypropylenes. FABES Forschungs-GmbH: Munich (last update August 2022).
  13. 13.↵
    1. Qiu D. Q.,
    2. Prentice P.
    Influence of Pressure on Bulk Density of Polymer Solid Granules at Different Temperatures. Adv. Polym. Technol. 1998, 17 (1), 23–36.
    OpenUrl
  14. 14.↵
    1. Kneidinger C.,
    2. Längauer M.,
    3. Zitzenbacher G.,
    4. Schuschnigg S.,
    5. Miethlinger J.
    Modeling and Estimation of the Pressure and Temperature Dependent Bulk Density of Polymers. Int. Polym. Process. 2020, 35 (1), 70–82.
    OpenUrl
  15. 15.↵
    Coefficient of Linear Thermal Expansion. Omnexus Website. https://omnexus.specialchem.com/polymer-properties/properties/coefficient-of-linear-thermal-expansion (accessed April 2022).
  16. 16.↵
    BASF Corporation. Technical Data Sheet: Irganox® 1076. https://adhesives.specialchem.com/product/a-basf-irganox-1076 (accessed April 2022).
  17. 17.↵
    BASF Corporation. Technical Data Sheet: Irgafos® 168. https://polymer-additives.specialchem.com/product/a-basf-irgafos-168 (accessed April 2022).
  18. 18.↵
    BASF Corporation. Technical Data Sheet: Irganox® 1330 https://adhesives.specialchem.com/product/a-basf-irganox-1330 (accessed April 2022).
  19. 19.↵
    BASF Corporation. Technical Data Sheet: Irganox® 1010 https://adhesives.specialchem.com/product/a-basf-irganox-1010 (accessed April 2022).
  20. 20.↵
    1. Zhao Y. H.,
    2. Abraham M. H.,
    3. Zissimos A. M.
    Fast Calculation of van der Waals Volume as a Sum of Atomic and Bond Contributions and Its Application to Drug Compounds. J. Org. Chem. 2003, 68 (19), 7368–7373.
    OpenUrlCrossRefPubMed
  21. 21.↵
    US EPA. 2022. Estimation Programs Interface Suite™ for Microsoft® Windows, v 4.11. United States Environmental Protection Agency, Washington, DC, USA; Databases for CAS-No. 2082-79-3, CAS-No. 31570-04-4, CAS-No. 1709-70-2, CAS-No. 6683-19-8.
  22. 22.↵
    1. Mercea P. V.,
    2. Kalisch A.,
    3. Ulrich M.,
    4. Benz H.,
    5. Piringer O. G.,
    6. Toşa V.,
    7. Schuster R.,
    8. Aranyi S.,
    9. Sejersen P.
    Modelling Migration of Substances from Polymers into Drinking Water. Part 1—Diffusion Coefficient Estimations. Polym. Test. 2018, 65, 176–188.
    OpenUrl
  23. 23.↵
    1. Mercea P. V.,
    2. Kalisch A.,
    3. Ulrich M.,
    4. Benz H.,
    5. Piringer O. G.,
    6. Toşa V.,
    7. Schuster R.,
    8. Sejersen P.
    Modelling Migration of Substances from Polymers into Drinking Water. Part 2—Partition Coefficient Estimations. Polym. Test. 2019, 76, 420–432.
    OpenUrl
  24. 24.↵
    1. Yalkowsky S. H.,
    2. He Y.,
    3. Jain P.
    Handbook of Aqueous Solubility Data, 2nd ed.; CRC Press: Boca Raton, FL, 2010.
  25. 25.↵
    1. Crank J.
    The Mathematics of Diffusion, 2nd ed.; Clarendon Press: Oxford, 1975; pp 1–11, 4468.
  26. 26.↵
    1. Crank J.
    The Mathematics of Diffusion, 2nd ed.; Clarendon Press: Oxford, 1975; pp 137–160.
  27. 27.↵
    1. Piringer O. G.,
    2. Baner A. L.
    1. Toşa V.,
    2. Mercea P.
    Solution of the diffusion equation for multilayer packaging. In Plastic Packaging: Interactions with Food and Pharmaceuticals; Piringer O. G., Baner A. L. Eds.; Wiley-VCH: Weinheim, 2008; Chapter 8, pp 247–262.
  28. 28.↵
    1. Toşa V.,
    2. Kovacs K.,
    3. Mercea P.,
    4. Piringer O.
    A Finite Difference Method for Modeling Migration of Impurities in Multilayer Systems. AIP Conf. Proc. 2008, 1048 (1), 802–805.
    OpenUrl
  29. 29.↵
    1. Mercea P. V.,
    2. Piringer O.,
    3. Toşa V.,
    4. Petrescu L.
    NUMERIC—A Calculation Algorithm for the Software MIGRATEST® exp-2018. FABES Forschungs-GmbH: Munich, 2018.
  30. 30.↵
    1. Mercea P. V.,
    2. Toşa V.,
    3. Hojbotă C.
    “PermSim_DPA2” and “DiffSim_2AD”. Numerical Software for fitting Permeation and Diffusion Data. FABES Forschungs-GmbH: Munich, 2014.
  31. 31.↵
    1. Arrhenius S.
    Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z. Phys. Chem. 1889, 4U (1), 226–248.
    OpenUrl
  32. 32.↵
    1. van’t Hoff J. H.
    Etudes de Dynamique Chimique, Frederik Muller: Amsterdam, 1884.
  33. 33.↵
    1. Henry W. III.
    Experiments on the Quantity of Gases Absorbed by Water, at Different Temperatures, and under Different Pressures. Phil. Trans. R. Soc. London 1803, 93, 29–274.
    OpenUrlCrossRef
  34. 34.↵
    Glass Transition Temperature. http://polymerdatabase.com/polymer%20physics/GlassTransition.html (accessed May 2022).
  35. 35.↵
    1. Limm W.,
    2. Hollifield H. C.
    Effect of Temperature and Mixing on Polymer Adjuvant Migration to Corn Oil and Water. Food Addit. Contam. 1995, 12 (4), 609–624.
    OpenUrlPubMed
  36. 36.↵
    1. Garde J. A.,
    2. Catala R.,
    3. Gavara R.,
    4. Hernandez R. J.
    Characterizing the Migration of Antioxidants from Polypropylene into Fatty Food Simulants. Food Addit. Contam. 2001, 18 (8), 750–762.
    OpenUrlCrossRefPubMed
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 78 (1)
PDA Journal of Pharmaceutical Science and Technology
Vol. 78, Issue 1
January/February 2024
  • Table of Contents
  • Index by Author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Modeling the Migration Behavior of Extractables from Mono- and Multilayer Polyolefin Films to Mathematically Predict the Concentration of Leachable Impurities in Pharmaceutical Drug Products. Part 1: Experimental Details and Modeling Experimental Results
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
8 + 5 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Modeling the Migration Behavior of Extractables from Mono- and Multilayer Polyolefin Films to Mathematically Predict the Concentration of Leachable Impurities in Pharmaceutical Drug Products. Part 1: Experimental Details and Modeling Experimental Results
Peter V. Mercea, Manfred Ossberger, Regina Wyrwich, Matthias Herburger, Vishal Barge, Rajendra Aluri, Valer Toşa
PDA Journal of Pharmaceutical Science and Technology Jan 2024, 78 (1) 3-32; DOI: 10.5731/pdajpst.2022.012816

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Modeling the Migration Behavior of Extractables from Mono- and Multilayer Polyolefin Films to Mathematically Predict the Concentration of Leachable Impurities in Pharmaceutical Drug Products. Part 1: Experimental Details and Modeling Experimental Results
Peter V. Mercea, Manfred Ossberger, Regina Wyrwich, Matthias Herburger, Vishal Barge, Rajendra Aluri, Valer Toşa
PDA Journal of Pharmaceutical Science and Technology Jan 2024, 78 (1) 3-32; DOI: 10.5731/pdajpst.2022.012816
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • 1. Introduction and Scope
    • 2. Materials and Experimental Methods
    • 3. Results of the Experiments
    • 4. Discussion
    • 5. Conclusions
    • Conflict of Interest Declaration
    • Acknowledgment
    • Appendix
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Worldwide Regulatory Reliance: Results of an Executed Chemistry, Manufacturing, and Control Post-Approval Change Pilot
  • Preservative Efficacy Testing of Refrigerated Pharmaceuticals: Choice of Challenging Isolate and Storage Temperature
  • Analysis of Virus Clearance for Biotechnology Manufacturing Processes from Early to Late Phase Development
Show more Research

Similar Articles

Keywords

  • Extractables and leachables (E&L)
  • Pharmaceutical packaging
  • Diffusion and Partition coefficients
  • Predictive modeling
  • Migration modeling

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire