Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleResearch

Impact of NaCl on Monoclonal Antibody Aggregation Induced by Agitation

Justin K.Y. Hong, Wei Liu and Kai Zheng
PDA Journal of Pharmaceutical Science and Technology July 2024, 78 (4) 465-474; DOI: https://doi.org/10.5731/pdajpst.2023.012860
Justin K.Y. Hong
1Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wei Liu
1Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kai Zheng
1Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: kaizheng07@gmail.com
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Reichert J. M.
    Marketed Therapeutic Antibodies Compendium. MAbs 2012, 4 (3), 413–415.
    OpenUrlCrossRefPubMedWeb of Science
  2. 2.↵
    1. Buss N. A. P. S.,
    2. Henderson S. J.,
    3. McFarlane M.,
    4. Shenton J. M.,
    5. de Haan L.
    Monoclonal Antibody Therapeutics: History and Future. Curr. Opin. Pharmacol. 2012, 12 (5), 615–622.
    OpenUrlCrossRefPubMed
  3. 3.↵
    1. Mahler H.-C.,
    2. Friess W.,
    3. Grauschopf U.,
    4. Kiese S.
    Protein Aggregation: Pathways, Induction Factors and Analysis. J. Pharm. Sci. 2009, 98 (9), 2909–2934.
    OpenUrlCrossRefPubMed
  4. 4.↵
    1. Li J.,
    2. Krause M. E.,
    3. Chen X.,
    4. Cheng Y.,
    5. Dai W.,
    6. Hill J. J.,
    7. Huang M.,
    8. Jordan S.,
    9. LaCasse D.,
    10. Narhi L.,
    11. Shalaev E.,
    12. Shieh I. C.,
    13. Thomas J. C.,
    14. Tu R.,
    15. Zheng S.,
    16. Zhu L.
    Interfacial Stress in the Development of Biologics: Fundamental Understanding, Current Practice, and Future Perspective. AAPS J. 2019, 21 (3), 44.
    OpenUrl
  5. 5.↵
    1. Shieh I. C.,
    2. Patel A. R.
    Predicting the Agitation-Induced Aggregation of Monoclonal Antibodies Using Surface Tensiometry. Mol. Pharmaceutics 2015, 12 (9), 3184–3193.
    OpenUrl
  6. 6.↵
    1. Narhi L. O.,
    2. Schmit J.,
    3. Bechtold-Peters K.,
    4. Sharma D.
    Classification of Protein Aggregates. J. Pharm. Sci. 2012, 101 (2), 493–498.
    OpenUrlCrossRefPubMed
  7. 7.↵
    1. Patten P. A.,
    2. Schellekens H.
    The Immunogenicity of Biopharmaceuticals. Lessons Learned and Consequences for Protein Drug Development. Dev. Biol. (Basel, Switz.) 2003, 112, 81–97.
    OpenUrl
  8. 8.↵
    1. Schellekens H.
    Immunogenicity of Therapeutic Proteins: Clinical Implications and Future Prospects. Clin. Ther. 2002, 24 (11), 1720–1740. discussion 1719.
    OpenUrlCrossRefPubMedWeb of Science
  9. 9.↵
    1. Joubert M. K.,
    2. Hokom M.,
    3. Eakin C.,
    4. Zhou L.,
    5. Deshpande M.,
    6. Baker M. P.,
    7. Goletz T. J.,
    8. Kerwin B. A.,
    9. Chirmule N.,
    10. Narhi L. O.,
    11. Jawa V.
    Highly Aggregated Antibody Therapeutics Can Enhance the In Vitro Innate and Late-Stage T-Cell Immune Responses. J. Biol. Chem. 2012, 287 (30), 25266–25279.
    OpenUrlAbstract/FREE Full Text
  10. 10.↵
    1. Rosenberg A. S.
    Effects of Protein Aggregates: An Immunologic Perspective. AAPS J. 2006, 8 (3), E501–E507.
    OpenUrlCrossRefPubMedWeb of Science
  11. 11.↵
    1. Carpenter J. F.,
    2. Randolph T. W.,
    3. Jiskoot W.,
    4. Crommelin D. J. A.,
    5. Middaugh C. R.,
    6. Winter G.,
    7. Fan Y.-X.,
    8. Kirshner S.,
    9. Verthelyi D.,
    10. Kozlowski S.,
    11. Clouse K. A.,
    12. Swann P. G.,
    13. Rosenberg A.,
    14. Cherney B.
    Overlooking Subvisible Particles in Therapeutic Protein Products: Gaps That May Compromise Product Quality. J. Pharm. Sci. 2009, 98 (4), 1201–1205.
    OpenUrlCrossRefPubMed
  12. 12.↵
    1. Kessler M.,
    2. Goldsmith D.,
    3. Schellekens H.
    Immunogenicity of Biopharmaceuticals. Nephrol., Dial., Transplant. 2006, 21 (Suppl 5), v9–v12.
    OpenUrlCrossRefPubMed
  13. 13.↵
    1. Wood C. V.,
    2. Razinkov V. I.,
    3. Qi W.,
    4. Furst E. M.,
    5. Roberts C. J.
    A Rapid, Small-Volume Approach to Evaluate Protein Aggregation at Air-Water Interfaces. J. Pharm. Sci. 2021, 110 (3), 1083–1092.
    OpenUrl
  14. 14.↵
    1. Koepf E.,
    2. Eisele S.,
    3. Schroeder R.,
    4. Brezesinski G.,
    5. Friess W.
    Notorious but Not Understood: How Liquid-Air Interfacial Stress Triggers Protein Aggregation. Int. J. Pharm. 2018, 537 (1-2), 202–212.
    OpenUrl
  15. 15.↵
    1. Bee J. S.,
    2. Randolph T. W.,
    3. Carpenter J. F.,
    4. Bishop S. M.,
    5. Dimitrova M. N.
    Effects of Surfaces and Leachables on the Stability of Biopharmaceuticals. J. Pharm. Sci. 2011, 100 (10), 4158–4170.
    OpenUrl
  16. 16.↵
    1. Jayaraman M.,
    2. Buck P. M.,
    3. Ignatius A. A.,
    4. King K. R.,
    5. Wang W.
    Agitation-Induced Aggregation and Subvisible Particulate Formation in Model Proteins. Eur. J. Pharm. Biopharm. 2014, 87 (2), 299–309.
    OpenUrl
  17. 17.↵
    1. Sieffert N.,
    2. Wipff G.
    Importance of Interfacial Adsorption in the Biphasic Hydroformylation of Higher Olefins Promoted by Cyclodextrins: A Molecular Dynamics Study at the Decene/Water Interface. Chem. – Eur. J. 2007, 13 (7), 1978–1990.
    OpenUrl
  18. 18.↵
    1. Vaclaw C.,
    2. Merritt K.,
    3. Pringle V.,
    4. Whitaker N.,
    5. Gokhale M.,
    6. Carvalho T.,
    7. Pan D.,
    8. Liu Z.,
    9. Bindra D.,
    10. Khossravi M.,
    11. Bolgar M.,
    12. Volkin D. B.,
    13. Ogunyankin M. O.,
    14. Dhar P.
    Impact of Polysorbate 80 Grade on the Interfacial Properties and Interfacial Stress Induced Subvisible Particle Formation in Monoclonal Antibodies. J. Pharm. Sci. 2021, 110 (2), 746–759.
    OpenUrl
  19. 19.↵
    1. Wood C. V.,
    2. McEvoy S.,
    3. Razinkov V. I.,
    4. Qi W.,
    5. Furst E. M.,
    6. Roberts C. J.
    Kinetics and Competing Mechanisms of Antibody Aggregation via Bulk- and Surface-Mediated Pathways. J. Pharm. Sci. 2020, 109 (4), 1449–1459.
    OpenUrl
  20. 20.↵
    1. Kannan A.,
    2. Shieh I. C.,
    3. Fuller G. G.
    Linking Aggregation and Interfacial Properties in Monoclonal Antibody-Surfactant Formulations. J. Colloid Interface Sci. 2019, 550, 128–138.
    OpenUrl
  21. 21.↵
    1. Khan T. A.,
    2. Mahler H.-C.,
    3. Kishore R. S. K.
    Key Interactions of Surfactants in Therapeutic Protein Formulations: A Review. Eur. J. Pharm. Biopharm. 2015, 97 (Part A), 60–67.
    OpenUrlCrossRef
  22. 22.↵
    1. Tein Y. S.,
    2. Zhang Z.,
    3. Wagner N. J.
    Competitive Surface Activity of Monoclonal Antibodies and Nonionic Surfactants at the Air-Water Interface Determined by Interfacial Rheology and Neutron Reflectometry. Langmuir 2020, 36 (27), 7814–7823.
    OpenUrl
  23. 23.↵
    1. Gamage C. L. D.,
    2. Weis D. D.,
    3. Walters B. T.
    Identification of Agitation-Induced Unfolding Events Causing Aggregation of Monoclonal Antibodies Using Hydrogen Exchange-Mass Spectrometry. J. Pharm. Sci. 2022, 111 (8), 2210–2216.
    OpenUrl
  24. 24.↵
    1. Vargo K. B.,
    2. Stahl P.,
    3. Hwang B.,
    4. Hwang E.,
    5. Giordano D.,
    6. Randolph P.,
    7. Celentano C.,
    8. Hepler R.,
    9. Amin K.
    Surfactant Impact on Interfacial Protein Aggregation and Utilization of Surface Tension to Predict Surfactant Requirements for Biological Formulations. Mol. Pharmaceutics 2021, 18 (1), 148–157.
    OpenUrl
  25. 25.↵
    1. Wang W.
    Instability, Stabilization, and Formulation of Liquid Protein Pharmaceuticals. Int. J. Pharm. 1999, 185 (2), 129–188.
    OpenUrlCrossRefPubMedWeb of Science
  26. 26.↵
    1. Goswami S.,
    2. Wang W.,
    3. Arakawa T.,
    4. Ohtake S.
    Developments and Challenges for mAb-Based Therapeutics. Antibodies 2013, 2 (4), 452–500.
    OpenUrl
  27. 27.↵
    1. Arosio P.,
    2. Jaquet B.,
    3. Wu H.,
    4. Morbidelli M.
    On the Role of Salt Type and Concentration on the Stability Behavior of a Monoclonal Antibody Solution. Biophys. Chem. 2012, 168–169, 19–27.
    OpenUrl
  28. 28.↵
    1. Nicoud L.,
    2. Arosio P.,
    3. Sozo M.,
    4. Yates A.,
    5. Norrant E.,
    6. Morbidelli M.
    Kinetic Analysis of the Multistep Aggregation Mechanism of Monoclonal Antibodies. J. Phys. Chem. B 2014, 118 (36), 10595–10606.
    OpenUrl
  29. 29.↵
    1. Imamura H.,
    2. Honda S.
    Kinetics of Antibody Aggregation at Neutral pH and Ambient Temperatures Triggered by Temporal Exposure to Acid. J. Phys. Chem. B 2016, 120 (36), 9581–9589.
    OpenUrl
  30. 30.↵
    1. De Young L. R.,
    2. Fink A. L.,
    3. Dill K. A.
    Aggregation of Globular-Proteins. Acc. Chem. Res. 1993, 26 (12), 614–620.
    OpenUrlCrossRef
  31. 31.↵
    1. Vicsek T.
    Fractal Growth Phenomena, 2nd ed.; World Scientific: Singapore; New Jersey, 1992.
  32. 32.↵
    1. Harshe Y. M.,
    2. Ehrl L.,
    3. Lattuada M.
    Hydrodynamic Properties of Rigid Fractal Aggregates of Arbitrary Morphology. J. Colloid Interface Sci. 2010, 352 (1), 87–98.
    OpenUrlPubMed
  33. 33.↵
    1. Vlasak J.,
    2. Ionescu R.
    Fragmentation of Monoclonal Antibodies. MAbs 2011, 3 (3), 253–263.
    OpenUrlCrossRefPubMed
  34. 34.↵
    1. Nicoud L.,
    2. Sozo M.,
    3. Arosio P.,
    4. Yates A.,
    5. Norrant E.,
    6. Morbidelli M.
    Role of Cosolutes in the Aggregation Kinetics of Monoclonal Antibodies. J. Phys. Chem. B 2014, 118 (41), 11921–11930.
    OpenUrl
  35. 35.↵
    1. Xia Y.,
    2. Ouyang J.
    Salt-Induced Charge Screening and Significant Conductivity Enhancement of Conducting Poly(3,4-Ethylenedioxythiophene):Poly(Styrenesulfonate). Macromolecules 2009, 42 (12), 4141–4147.
    OpenUrlCrossRef
  36. 36.↵
    1. Kannan A.,
    2. Shieh I. C.,
    3. Hristov P.,
    4. Fuller G. G.
    In-Use Interfacial Stability of Monoclonal Antibody Formulations Diluted in Saline i.v. Bags. J. Pharm. Sci. 2021, 110 (4), 1687–1692.
    OpenUrl
  37. 37.↵
    1. Li Y.,
    2. Weiss W.F. IV.,
    3. Roberts C. J.
    Characterization of High-Molecular-Weight Nonnative Aggregates and Aggregation Kinetics by Size Exclusion Chromatography with Inline Multi-Angle Laser Light Scattering. J. Pharm. Sci. 2009, 98 (11), 3997–4016.
    OpenUrlCrossRefPubMed
  38. 38.↵
    1. Li Y.,
    2. Roberts C. J.
    Lumry-Eyring Nucleated-Polymerization Model of Protein Aggregation Kinetics. 2. Competing Growth via Condensation and Chain Polymerization. J. Phys. Chem. B 2009, 113 (19), 7020–7032.
    OpenUrlPubMed
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 78 (4)
PDA Journal of Pharmaceutical Science and Technology
Vol. 78, Issue 4
July/August 2024
  • Table of Contents
  • Index by Author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Impact of NaCl on Monoclonal Antibody Aggregation Induced by Agitation
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
14 + 5 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Impact of NaCl on Monoclonal Antibody Aggregation Induced by Agitation
Justin K.Y. Hong, Wei Liu, Kai Zheng
PDA Journal of Pharmaceutical Science and Technology Jul 2024, 78 (4) 465-474; DOI: 10.5731/pdajpst.2023.012860

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Impact of NaCl on Monoclonal Antibody Aggregation Induced by Agitation
Justin K.Y. Hong, Wei Liu, Kai Zheng
PDA Journal of Pharmaceutical Science and Technology Jul 2024, 78 (4) 465-474; DOI: 10.5731/pdajpst.2023.012860
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results and Discussions
    • Conclusion
    • Conflict of Interest Declaration
    • Footnotes
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Quantitative and Qualitative Evaluation of Microorganism Profile Identified in Bioburden Analysis in a Biopharmaceutical Facility in Brazil: Criteria for Classification and Management of Results
  • Evaluation of Extreme Depyrogenation Conditions on the Surface Hydrolytic Resistance of Glass Containers for Pharmaceutical Use
  • A Holistic Approach for Filling Volume Variability Evaluation and Control with Statistical Tool
Show more Research

Similar Articles

Keywords

  • air-liquid interface
  • agitation stress
  • monoclonal antibody
  • pharmaceutical development
  • protein aggregation

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire