Skip to main content
  • Main menu
  • User menu
  • Search

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleResearch

Identification and Root Cause Analysis of the Visible Particles Commonly Encountered in the Biopharmaceutical Industry

Bo Wang, Shanshan Zhang, Mengyi Chen, Ming Lei, Tian Gao, Wei Fan, Jincui Huang and Xiaolin Cao
PDA Journal of Pharmaceutical Science and Technology September 2024, 78 (5) 586-603; DOI: https://doi.org/10.5731/pdajpst.2023.012894
Bo Wang
Analytical Sciences, Biologics Development, WuXi Biologics, Shanghai, 230019 China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shanshan Zhang
Analytical Sciences, Biologics Development, WuXi Biologics, Shanghai, 230019 China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mengyi Chen
Analytical Sciences, Biologics Development, WuXi Biologics, Shanghai, 230019 China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ming Lei
Analytical Sciences, Biologics Development, WuXi Biologics, Shanghai, 230019 China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tian Gao
Analytical Sciences, Biologics Development, WuXi Biologics, Shanghai, 230019 China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wei Fan
Analytical Sciences, Biologics Development, WuXi Biologics, Shanghai, 230019 China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jincui Huang
Analytical Sciences, Biologics Development, WuXi Biologics, Shanghai, 230019 China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xiaolin Cao
Analytical Sciences, Biologics Development, WuXi Biologics, Shanghai, 230019 China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: cao_xiaolin@wuxibiologics.com
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Cromwell M. E. M.,
    2. Hilario E.,
    3. Jacobson F.
    Protein Aggregation and Bioprocessing. AAPS J. 2006, 8 (3), E572–E579.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  2. 2.↵
    1. Das T. K.
    Protein Particulate Detection Issues in Biotherapeutics Development—Current Status. AAPS PharmSciTech 2012, 13 (2), 732–746.
    OpenUrlCrossRefPubMedGoogle Scholar
  3. 3.↵
    1. Doessegger L.,
    2. Mahler H.-C.,
    3. Szczesny P.,
    4. Rockstroh H.,
    5. Kallmeyer G.,
    6. Langenkamp A.,
    7. Herrmann J.,
    8. Famulare J.
    The Potential Clinical Relevance of Visible Particles in Parenteral Drugs. J. Pharm. Sci. 2012, 101 (8), 2635–2644.
    OpenUrlPubMedGoogle Scholar
  4. 4.↵
    1. Mahler H.-C.,
    2. Friess W.,
    3. Grauschopf U.,
    4. Kiese S.
    Protein Aggregation: Pathways, Induction Factors and Analysis. J. Pharm. Sci. 2009, 98 (9), 2909–2934.
    OpenUrlCrossRefPubMedGoogle Scholar
  5. 5.↵
    1. Mathonet S.,
    2. Mahler H.-C.,
    3. Esswein S. T.,
    4. Mazaheri M.,
    5. Cash P. W.,
    6. Wuchner K.,
    7. Kallmeyer G.,
    8. Das T. K.,
    9. Finkler C.,
    10. Lennard A.
    A Biopharmaceutical Industry Perspective on the Control of Visible Particles in Biotechnology-Derived Injectable Drug Products. PDA J. Pharm. Sci. Technol. 2016, 70 (4), 392–408.
    OpenUrlAbstract/FREE Full TextGoogle Scholar
  6. 6.↵
    1. Bukofzer S.,
    2. Ayres J.,
    3. Chavez A.,
    4. Devera M.,
    5. Miller J.,
    6. Ross D.,
    7. Shabushnig J.,
    8. Vargo S.,
    9. Watson H.,
    10. Watson R.
    Industry Perspective on the Medical Risk of Visible Particles in Injectable Drug Products. PDA J. Pharm. Sci. Technol. 2015, 69 (1), 123–139.
    OpenUrlFREE Full TextGoogle Scholar
  7. 7.↵
    1. Cao X.,
    2. Masatani P.,
    3. Torraca G.,
    4. Wen Z.-Q.
    Identification of a Mixed Microparticle by Combined Microspectroscopic Techniques: A Real Forensic Case Study in the Biopharmaceutical Industry. Appl. Spectrosc. 2010, 64 (8), 895–900.
    OpenUrlCrossRefPubMedGoogle Scholar
  8. 8.↵
    1. Anger S.,
    2. Begat C.,
    3. Crnko V.,
    4. Fantozzi G.,
    5. Farach W.,
    6. Fitzpatrick S.,
    7. Gallagher B.,
    8. Huelsmann S.,
    9. Kinsey P.,
    10. Langlade V.,
    11. Lefevre G.,
    12. Legendre E.,
    13. McLean K.,
    14. Miller J.,
    15. Patel R.,
    16. Perry A.,
    17. Soukiassian H.,
    18. Stanton A.,
    19. Streich D.,
    20. Timmons C.,
    21. Vaneylen D.,
    22. van Hoose T.,
    23. Wildling L.,
    24. Windover M.
    Points to Consider: Best Practices to Identify Particle Entry Routes Along the Manufacturing Process for Parenteral Formulations. PDA J. Pharm. Sci. Technol. 2019, 73 (6), 635–647.
    OpenUrlAbstract/FREE Full TextGoogle Scholar
  9. 9.↵
    U.S. Pharmacopeial Convention. General Chapter <1787> Measurement of Subvisible Particulate Matter in Therapeutic Protein Injections. In USP 43—NF 38, USP: Rockville, MD, 2021.
    Google Scholar
  10. 10.↵
    1. Cao X.,
    2. Stimpfl G.,
    3. Wen Z.-Q.,
    4. Frank G.,
    5. Hunter G.
    Identification and Root Cause Analysis of Cell Culture Media Precipitates in the Viral Deactivation Treatment with High-Temperature/Short-Time Method. PDA J. Pharm. Sci. Technol. 2013, 67 (1), 63–73.
    OpenUrlAbstract/FREE Full TextGoogle Scholar
  11. 11.↵
    1. Hindelang F.,
    2. Roggo Y.,
    3. Zurbach R.
    Forensic Investigation in the Pharmaceutical Industry: Identification Procedure of Visible Particles in (Drug) Solutions and Different Containers by Combining Vibrational and X-Ray Spectroscopic Techniques. J. Pharm. Biomed. Anal. 2018, 148 334–349.
    OpenUrlPubMedGoogle Scholar
  12. 12.↵
    1. Causin V.,
    2. Marega C.,
    3. Guzzini G.,
    4. Marigo A.
    Forensic Analysis of Poly(Ethylene Terephthalate) Fibers by Infrared Spectroscopy. Appl. Spectrosc. 2004, 58 (11), 1272–1276.
    OpenUrlCrossRefPubMedGoogle Scholar
  13. 13.↵
    1. Cao X.,
    2. Wen Z.-Q.,
    3. Vance A.,
    4. Torraca G.
    Raman Microscopic Applications in the Biopharmaceutical Industry: In Situ Identification of Foreign Particulates inside Glass Containers with Aqueous Formulated Solutions. Appl. Spectrosc. 2009, 63 (7), 830–834.
    OpenUrlCrossRefPubMedGoogle Scholar
  14. 14.↵
    1. Cao X.,
    2. Loussaert J. A.,
    3. Wen Z-Q.
    Microspectroscopic Investigation of the Membrane Clogging During the Sterile Filtration of the Growth Media for Mammalian Cell Culture. J. Pharm. Biomed. Anal. 2016, 119 10–15.
    OpenUrlPubMedGoogle Scholar
  15. 15.↵
    1. Jameel F.,
    2. Skoug J. W.,
    3. Nesbitt R. R.
    1. Messick S.,
    2. Saggu M.,
    3. Ríos Quiroz A.
    Chapter 11: Particles in Biopharmaceuticals: Causes, Characterization, and Strategy. In Development of Biopharmaceutical Drug-Device Products, Jameel F., Skoug J. W., Nesbitt R. R., Eds.; AAPS Advances in the Pharmaceutical Sciences Series, Vol 35; Springer International Publishing: Cham, 2020; pp 251–264.
    Google Scholar
  16. 16.↵
    1. Brown A. E.,
    2. Reinhart K. A.
    Polyester Fiber: From Its Invention to Its Present Position. Science 1971, 173 (3994), 287–293.
    OpenUrlAbstract/FREE Full TextGoogle Scholar
  17. 17.↵
    1. Shit S. C.,
    2. Shah P.
    A Review on Silicone Rubber. Natl. Acad. Sci. Lett. 2013, 36 (4), 355–365.
    OpenUrlCrossRefGoogle Scholar
  18. 18.↵
    1. Saller V.,
    2. Matilainen J.,
    3. Grauschopf U.,
    4. Bechtold-Peters K.,
    5. Mahler H.-C.,
    6. Friess W.
    Particle Shedding from Peristaltic Pump Tubing in Biopharmaceutical Drug Product Manufacturing. J. Pharm. Sci. 2015, 104 (4), 1440–1450.
    OpenUrlPubMedGoogle Scholar
  19. 19.↵
    1. Gerhardt A.,
    2. Mcgraw N. R.,
    3. Schwartz D. K.,
    4. Bee J. S.,
    5. Carpenter J. F.,
    6. Randolph T. W.
    Protein Aggregation and Particle Formation in Prefilled Glass Syringes. J. Pharm. Sci. 2014, 103 (6), 1601–1612.
    OpenUrlPubMedGoogle Scholar
  20. 20.↵
    1. Gerhardt A.,
    2. Nguyen B. H.,
    3. Lewus R.,
    4. Carpenter J. F.,
    5. Randolph T. W.
    Effect of the Siliconization Method on Particle Generation in a Monoclonal Antibody Formulation in Pre-Filled Syringes. J. Pharm. Sci. 2015, 104 (5), 1601–1609.
    OpenUrlPubMedGoogle Scholar
  21. 21.↵
    1. Jezek J.,
    2. Darton N. J.,
    3. Derham B. K.,
    4. Royle N.,
    5. Simpson I.
    Biopharmaceutical Formulations for Pre-Filled Delivery Devices. Expert Opin. Drug Delivery 2013, 10 (6), 811–828.
    OpenUrlGoogle Scholar
  22. 22.↵
    1. Gilbert C. R.,
    2. Haouzi P.
    Particle Size, Distribution, and Behavior of Talc Preparations: Within the United States and Beyond. Curr. Opin. Pulm. Med. 2019, 25 (4), 1531–6971.
    OpenUrlGoogle Scholar
  23. 23.↵
    1. Kopp M. R. G.,
    2. Grigolato F.,
    3. Zürcher D.,
    4. Das T. K.,
    5. Chou D.,
    6. Wuchner K.,
    7. Arosio P.
    Surface-Induced Protein Aggregation and Particle Formation in Biologics: Current Understanding of Mechanisms, Detection and Mitigation Strategies. J. Pharm. Sci 2023, 112 (2), 377–385.
    OpenUrlCrossRefPubMedGoogle Scholar
  24. 24.↵
    U.S. Food and Drug Administration, Guidance for Industry: Container Closure Systems for Packaging Human Drugs and Biologics. Center for Drug Evaluation and Research, U.S. Department of Health and Human Services: Rockville, MD, 1999.
    Google Scholar
  25. 25.↵
    International Conference for Harmonisation, Quality Guideline Q1A(R2): Stability Testing of New Drug Substances and Products. ICH: Geneva, 2003.
    Google Scholar
  26. 26.↵
    1. Carter S. M.,
    2. Granchelli J.
    Thermo Scientific Nalgene PETG Bottle Performance at −70°C. ThermoFisher Scientific, 2021.
    Google Scholar
  27. 27.↵
    1. Sacha G. A.,
    2. Saffell-Clemmer W.,
    3. Abram K.,
    4. Akers M. J.
    Practical Fundamentals of Glass, Rubber, and Plastic Sterile Packaging Systems. Pharm. Dev. Technol. 2010, 15 (1), 6–34.
    OpenUrlPubMedGoogle Scholar
  28. 28.↵
    U.S. Pharmacopeial Convention. General Chapter <1660> Evaluation of the Inner Surface Durability of Glass Containers. In USP 43—NF 38, USP: Rockville, MD, 2019.
    Google Scholar
  29. 29.↵
    U.S. Pharmacopeial Convention. General Chapter <660> Containers—Glass. In USP 43—NF 38, USP: Rockville, MD, 2019
    Google Scholar
  30. 30.↵
    1. Langille S. E.
    Particulate Matter in Injectable Drug Products. PDA J. Pharm. Sci. Technol. 2013, 67 (3), 186–200.
    OpenUrlAbstract/FREE Full TextGoogle Scholar
  31. 31.↵
    1. Timmons C. L.,
    2. Liu C. Y.,
    3. Merkle S.
    Particulate Generation Mechanisms During Bulk Filling and Mitigation Via New Glass Vial. PDA J. Pharm. Sci. Technol. 2017, 71 (5), 379–392.
    OpenUrlAbstract/FREE Full TextGoogle Scholar
  32. 32.↵
    1. Ennis R. D.,
    2. Pritchard R.,
    3. Nakamura C.,
    4. Coulon M.,
    5. Yang T.,
    6. Visor G. C.,
    7. Lee W. A.
    Glass Vials for Small Volume Parenterals: Influence of Drug and Manufacturing Processes on Glass Delamination. Pharm. Dev. Technol. 2001, 6 (3), 393–405.
    OpenUrlPubMedGoogle Scholar
  33. 33.↵
    1. Iacocca R. G.,
    2. Allgeier M.
    Corrosive Attack of Glass by a Pharmaceutical Compound. J. Mater. Sci. 2007, 42 (3), 801–811.
    OpenUrlGoogle Scholar
  34. 34.↵
    1. Schwarzenbach M. S.,
    2. Reimann P.,
    3. Thommen V.,
    4. Hegner M.,
    5. Mumenthaler M.,
    6. Schwob J.,
    7. Güntherodt H.-J.
    Topological Structure and Chemical Composition of Inner Surfaces of Borosilicate Vials. PDA J. Pharm. Sci. Technol. 2004, 58 (3), 169–175.
    OpenUrlAbstract/FREE Full TextGoogle Scholar
  35. 35.↵
    1. Ratnaswamy G.,
    2. Hair A.,
    3. Li G.,
    4. Thirumangalathu R.,
    5. Nashed-Samuel Y.,
    6. Brych L.,
    7. Dharmavaram V.,
    8. Wen Z.-Q.,
    9. Fujimori K.,
    10. Jing W.,
    11. Sethuraman A.,
    12. Swift R.,
    13. Ricci M. S.,
    14. Piedmonte D. M.
    A Case Study of Nondelamination Glass Dissolution Resulting in Visible Particles: Implications for Neutral pH Formulations. J. Pharm. Sci. 2014, 103 (4), 1104–1114.
    OpenUrlPubMedGoogle Scholar
  36. 36.↵
    1. Tyagi A. K.,
    2. Banerjee S.
    1. Sengupta P.
    Natural Glasses Under Extreme Conditions. In Materials under Extreme Conditions: Recent Trends and Future Prospects; Tyagi A. K., Banerjee S. Eds.; Elsevier, 2017; pp 235–258.
    Google Scholar
  37. 37.↵
    1. Jones L. S.,
    2. Kaufmann A.,
    3. Middaugh C. R.
    Silicone Oil Induced Aggregation of Proteins. J. Pharm. Sci. 2005, 94 (4), 918–927.
    OpenUrlCrossRefPubMedGoogle Scholar
  38. 38.↵
    1. Mizutani T.
    Estimation of Protein and Drug Adsorption onto Silicone-Coated Glass Surfaces. J. Pharm. Sci. 1981, 70 (5), 493–496.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  39. 39.↵
    1. Basu P.,
    2. Krishnan S.,
    3. Thirumangalathu R.,
    4. Randolph T. W.,
    5. Carpenter J. F.
    IgG1 Aggregation and Particle Formation Induced by Silicone-Water Interfaces on Siliconized Borosilicate Glass Beads: A Model for Siliconized Primary Containers. J. Pharm. Sci. 2013, 102 (3), 852–865.
    OpenUrlPubMedGoogle Scholar
  40. 40.↵
    1. Kasimbeg P. N. O.,
    2. Cheong F. C.,
    3. Ruffner D. B.,
    4. Blusewicz J. M.,
    5. Philips L. A.
    Holographic Characterization of Protein Aggregates in the Presence of Silicone Oil and Surfactants. J. Pharm. Sci. 2019, 108 (1), 155–161.
    OpenUrlPubMedGoogle Scholar
  41. 41.↵
    1. Lankers M.,
    2. Munhall J.,
    3. Valet O.
    Differentiation between Foreign Particulate Matter and Silicone Oil Induced Protein Aggregation in Drug Solutions by Automated Raman Spectroscopy. Microsc. Microanal. 2008, 14 (S2), 1612–1613.
    OpenUrlGoogle Scholar
  42. 42.↵
    1. Wang W.,
    2. Ignatius A. A.,
    3. Thakkar S. V.
    Impact of Residual Impurities and Contaminants on Protein Stability. J. Pharm. Sci. 2014, 103 (5), 1315–1330.
    OpenUrlPubMedGoogle Scholar
  43. 43.↵
    1. Li J.,
    2. Pinnamaneni S.,
    3. Quan Y.,
    4. Jaiswal A.,
    5. Andersson F. I.,
    6. Zhang X.
    Mechanistic Understanding of Protein-Silicone Oil Interactions. Pharm. Res. 2012, 29 (6), 1689–1697.
    OpenUrlCrossRefPubMedGoogle Scholar
  44. 44.↵
    1. Mathaes R.,
    2. Mahler H.-C.,
    3. Buettiker J.-P.,
    4. Roehl H.,
    5. Lam P.,
    6. Brown H.,
    7. Luemkemann J.,
    8. Adler M.,
    9. Huwyler J.,
    10. Streubel A.,
    11. Mohl S.
    The Pharmaceutical Vial Capping Process: Container Closure Systems, Capping Equipment, Regulatory Framework, and Seal Quality Tests. Eur. J. Pharm. Biopharm. 2016, 99, 54–64.
    OpenUrlPubMedGoogle Scholar
  45. 45.↵
    1. Hecker A.,
    2. Di Maro A.,
    3. Liechti E. F.,
    4. Klenke F. M.
    Avoiding Unconscious Injection of Vial-Derived Rubber Particles During Intra-Articular Drug Administration. Osteoarthritis and Cartilage Open 2021, 3 (2), 100164.
    OpenUrlGoogle Scholar
  46. 46.↵
    1. Rathore N.,
    2. Rajan R. S.
    Current Perspectives on Stability of Protein Drug Products During Formulation, Fill and Finish Operations. Biotechnol. Prog. 2008, 24 (3), 504–514.
    OpenUrlPubMedGoogle Scholar
  47. 47.↵
    1. Wang W.
    Instability, Stabilization, and Formulation of Liquid Protein Pharmaceuticals. Int. J. Pharm. 1999, 185 (2), 129–188.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  48. 48.↵
    1. Wang W.,
    2. Singh S.,
    3. Zeng D. L.,
    4. King K.,
    5. Nema S.
    Antibody Structure, Instability, and Formulation. J. Pharm. Sci. 2007, 96 (1), 1–26.
    OpenUrlCrossRefPubMedGoogle Scholar
  49. 49.↵
    1. Sharma B.
    Immunogenicity of Therapeutic Proteins. Part 1: Impact of Product Handling. Biotechnol. Adv. 2007, 25 (3), 310–317.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  50. 50.↵
    1. Sharma B.
    Immunogenicity of Therapeutic Proteins. Part 2: Impact of Container Closures. Biotechnol. Adv. 2007, 25 (3), 318–324.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  51. 51.↵
    1. Sharma B.
    Immunogenicity of Therapeutic Proteins. Part 3: Impact of Manufacturing Changes. Biotechnol. Adv. 2007, 25 (3), 325–331.
    OpenUrlCrossRefPubMedGoogle Scholar
  52. 52.↵
    1. Thurow H.,
    2. Geisen K.
    Stabilisation of Dissolved Proteins against Denaturation at Hydrophobic Interfaces. Diabetologia 1984, 27 (2), 212–218.
    OpenUrlPubMedGoogle Scholar
  53. 53.↵
    1. Zhou S.,
    2. Schöneich C.,
    3. Singh S. K.
    Biologics Formulation Factors Affecting Metal Leachables from Stainless Steel. AAPS PharmSciTech 2011, 12 (1), 411–421.
    OpenUrlPubMedGoogle Scholar
  54. 54.↵
    1. Chu G. C.,
    2. Chelius D.,
    3. Xiao G.,
    4. Khor H. K.,
    5. Coulibaly S.,
    6. Bondarenko P. V.
    Accumulation of Succinimide in a Recombinant Monoclonal Antibody in Mildly Acidic Buffers under Elevated Temperatures. Pharm. Res. 2007, 24 (6), 1145–1156.
    OpenUrlPubMedGoogle Scholar
  55. 55.↵
    1. Dolník V.
    Capillary Electrophoresis of Proteins 2003–2005. Electrophoresis 2006, 27 (1), 126–141.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  56. 56.↵
    1. Gadgil H. S.,
    2. Bondarenko P. V.,
    3. Pipes G.,
    4. Rehder D.,
    5. McAuley A.,
    6. Perico N.,
    7. Dillon T.,
    8. Ricci M.,
    9. Treuheit M.
    The LC/MS Analysis of Glycation of IGG Molecules in Sucrose Containing Formulations. J. Pharm. Sci. 2007, 96 (10), 2607–2621.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  57. 57.↵
    1. Harris R. J.,
    2. Kabakoff B.,
    3. Macchi F. D.,
    4. Shen F. J.,
    5. Kwong M.,
    6. Andya J. D.,
    7. Shire S. J.,
    8. Bjork N.,
    9. Totpal K.,
    10. Chen A. B.
    Identification of Multiple Sources of Charge Heterogeneity in a Recombinant Antibody. J. Chromatogr. B: Biomed. Sci. Appl. 2001, 752 (2), 233–245.
    OpenUrlCrossRefPubMedGoogle Scholar
  58. 58.↵
    1. Leiske D. L.,
    2. Shieh I. C.,
    3. Tse M. L.
    A Method to Measure Protein Unfolding at an Air–Liquid Interface. Langmuir 2016, 32 (39), 9930–9937.
    OpenUrlPubMedGoogle Scholar
  59. 59.↵
    1. Paul A. J.,
    2. Bickel F.,
    3. Röhm M.,
    4. Hospach L.,
    5. Halder B.,
    6. Rettich N.,
    7. Handrick R.,
    8. Herold E. M.,
    9. Kiefer H.,
    10. Hesse F.
    High-Throughput Analysis of Sub-Visible mAb Aggregate Particles Using Automated Fluorescence Microscopy Imaging. Anal. Bioanal. Chem. 2017, 409 (17), 4149–4156.
    OpenUrlPubMedGoogle Scholar
  60. 60.↵
    1. Shieh I. C.,
    2. Patel A. R.
    Predicting the Agitation-Induced Aggregation of Monoclonal Antibodies Using Surface Tensiometry. Mol. Pharmaceutics 2015, 12 (9), 3184–3193.
    OpenUrlGoogle Scholar
  61. 61.↵
    1. Lin G. L.,
    2. Pathak J. A.,
    3. Kim D. H.,
    4. Carlson M.,
    5. Riguero V.,
    6. Kim Y. J.,
    7. Buff J. S.,
    8. Fuller G. G.
    Interfacial Dilatational Deformation Accelerates Particle Formation in Monoclonal Antibody Solutions. Soft Matter 2016, 12 (14), 3293–3302.
    OpenUrlPubMedGoogle Scholar
  62. 62.↵
    1. Zhai J.,
    2. Lee T.-H.,
    3. Small D. H.,
    4. Aguilar M.-I.
    Characterization of Early Stage Intermediates in the Nucleation Phase of Abeta Aggregation. Biochemistry 2012, 51 (6), 1070–1078.
    OpenUrlPubMedGoogle Scholar
  63. 63.↵
    1. Rosenberg A. S.
    Effects of Protein Aggregates: An Immunologic Perspective. AAPS J. 2006, 8 (3), E501–E507.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  64. 64.↵
    1. Shukla D.,
    2. Schneider C. P.,
    3. Trout B. L.
    Molecular Level Insight into Intra-Solvent Interaction Effects on Protein Stability and Aggregation. Adv. Drug Delivery Rev. 2011, 63 (13), 1074–1085.
    OpenUrlPubMedGoogle Scholar
  65. 65.↵
    1. Wang W.
    Protein Aggregation and Its Inhibition in Biopharmaceutics. Int. J. Pharm. 2005, 289 (1–2), 1–30.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  66. 66.↵
    1. Wang W.,
    2. Roberts C. J.
    Protein Aggregation – Mechanisms, Detection, and Control. Int. J. Pharm. 2018, 550 (1–2), 251–268.
    OpenUrlPubMedGoogle Scholar
  67. 67.↵
    1. Lins R. D.,
    2. Pereira C. S.,
    3. Hünenberger P. H.
    Trehalose–Protein Interaction in Aqueous Solution. Proteins 2004, 55 (1), 177–186.
    OpenUrlCrossRefPubMedGoogle Scholar
  68. 68.↵
    1. Timasheff S. N.
    Protein-Solvent Preferential Interactions, Protein Hydration, and the Modulation of Biochemical Reactions by Solvent Components. Proc. Natl. Acad. Sci. U.S.A. 2002, 99 (15), 9721–9726.
    OpenUrlAbstract/FREE Full TextGoogle Scholar
  69. 69.↵
    1. Warne N. W.,
    2. Mahler H.-C.
    1. Singh S. K.
    Sucrose and Trehalose in Therapeutic Protein Formulations. In Challenges in Protein Product Development, Warne N. W., Mahler H.-C., Eds.; AAPS Advances in the Pharmaceutical Sciences Series, Vol. 38; Springer International Publishing: Cham, 2018; pp 63–95.
    Google Scholar
  70. 70.↵
    1. Wang B.,
    2. Tchessalov S.,
    3. Warne N. W.,
    4. Pikal M. J.
    Impact of Sucrose Level on Storage Stability of Proteins in Freeze-Dried Solids: I. Correlation of Protein–Sugar Interaction with Native Structure Preservation. J. Pharm. Sci. 2009, 98 (9), 3131–3144.
    OpenUrlPubMedGoogle Scholar
  71. 71.↵
    1. Israelachvili J. N.
    Intermolecular and Surface Forces; Elsevier, 2011.
    Google Scholar
  72. 72.↵
    1. Chen C.-H.,
    2. Yao T.,
    3. Zhang Q.,
    4. He Y.-M.,
    5. Xu L.-H.,
    6. Zheng M.,
    7. Zhou G.-R.,
    8. Zhang Y.,
    9. Yang H.-J.,
    10. Zhou P.
    Influence of Trehalose on Human Islet Amyloid Polypeptide Fibrillation and Aggregation. RSC Adv. 2016, 6 (18), 15240–15246.
    OpenUrlGoogle Scholar
  73. 73.↵
    1. Liu L.,
    2. Qi W.,
    3. Schwartz D. K.,
    4. Randolph T. W.,
    5. Carpenter J. F.
    The Effects of Excipients on Protein Aggregation During Agitation: An Interfacial Shear Rheology Study. J. Pharm. Sci. 2013, 102 (8), 2460–2470.
    OpenUrlPubMedGoogle Scholar
  74. 74.↵
    1. Abbas S. A.,
    2. Sharma V. K.,
    3. Patapoff T. W.,
    4. Kalonia D. S.
    Characterization of Antibody-Polyol Interactions by Static Light Scattering: Implications for Physical Stability of Protein Formulations. Int. J. Pharm. 2013, 448 (2), 382–389.
    OpenUrlPubMedGoogle Scholar
  75. 75.↵
    1. Lim J. Y.,
    2. Kim N. A.,
    3. Lim D. G.,
    4. Eun C-y.,
    5. Choi D.,
    6. Jeong S. H.
    Biophysical Stability of hyFc Fusion Protein with Regards to Buffers and Various Excipients. Int. J. Biol. Macromol. 2016, 86, 622–629.
    OpenUrlPubMedGoogle Scholar
  76. 76.↵
    1. Wen L.,
    2. Zheng X.,
    3. Wang X.,
    4. Lan H.,
    5. Yin Z.
    Bilateral Effects of Excipients on Protein Stability: Preferential Interaction Type of Excipient and Surface Aromatic Hydrophobicity of Protein. Pharm. Res. 2017, 34 (7), 1378–1390.
    OpenUrlPubMedGoogle Scholar
  77. 77.↵
    1. Cao X.,
    2. Fesinmeyer R. M.,
    3. Pierini C. J.,
    4. Siska C. C.,
    5. Litowski J. R.,
    6. Brych S.,
    7. Wen Z.-Q.,
    8. Kleemann G. R.
    Free Fatty Acid Particles in Protein Formulations, Part 1: Microspectroscopic Identification. J. Pharm. Sci. 2015, 104 (2), 433–446.
    OpenUrlPubMedGoogle Scholar
  78. 78.↵
    1. Kerwin B. A.
    Polysorbates 20 and 80 Used in the Formulation of Protein Biotherapeutics: Structure and Degradation Pathways. J. Pharm. Sci. 2008, 97 (8), 2924–2935.
    OpenUrlCrossRefPubMedGoogle Scholar
  79. 79.↵
    1. Katakam M.,
    2. Bell L. N.,
    3. Banga A. K.
    Effect of Surfactants on the Physical Stability of Recombinant Human Growth Hormone. J. Pharm. Sci. 1995, 84 (6), 713–716.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  80. 80.↵
    1. Kishore R. S. K.,
    2. Kiese S.,
    3. Fischer S.,
    4. Pappenberger A.,
    5. Grauschopf U.,
    6. Mahler H.-C.
    The Degradation of Polysorbates 20 and 80 and Its Potential Impact on the Stability of Biotherapeutics. Pharm. Res. 2011, 28 (5), 1194–1210.
    OpenUrlPubMedGoogle Scholar
  81. 81.↵
    1. Maa Y.-F.,
    2. Hsu C. C.
    Investigation on Fouling Mechanisms for Recombinant Human Growth Hormone Sterile Filtration. J. Pharm. Sci. 1998, 87 (7), 808–812.
    OpenUrlCrossRefPubMedGoogle Scholar
  82. 82.↵
    1. Carpenter J. F.,
    2. Manning M. C.
    1. Randolph T. W.,
    2. Jones L. S.
    Surfactant-Protein Interactions. In Rational Design of Stable Protein Formulations: Theory and Practice; Carpenter J. F., Manning M. C., Eds.; Springer: New York, 2002; pp 159–175.
    Google Scholar
  83. 83.↵
    1. Himanen J.-P.,
    2. Sarvas M.,
    3. Helander I. M.
    Assessment of Non-Protein Impurities in Potential Vaccine Proteins Produced by Bacillus subtilis. Vaccine 1993, 11 (9), 970–973.
    OpenUrlCrossRefPubMedGoogle Scholar
  84. 84.↵
    1. Johnston A.,
    2. Uren E.,
    3. Johnstone D.,
    4. Wu J.
    Low pH, Caprylate Incubation as a Second Viral Inactivation Step in the Manufacture of Albumin: Parametric and Validation Studies. Biologicals 2003, 31 (3), 213–221.
    OpenUrlPubMedGoogle Scholar
  85. 85.↵
    1. Tong H.-F.,
    2. Lin D.-Q.,
    3. Gao D.,
    4. Yuan X.-M.,
    5. Yao S.-J.
    Caprylate as the Albumin-Selective Modifier to Improve IgG Purification with Hydrophobic Charge-Induction Chromatography. J. Chromatogr. A 2013, 1285, 88–96.
    OpenUrlPubMedGoogle Scholar
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 78 (5)
PDA Journal of Pharmaceutical Science and Technology
Vol. 78, Issue 5
September/October 2024
  • Table of Contents
  • Index by Author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Email Article
Citation Tools
Share
Identification and Root Cause Analysis of the Visible Particles Commonly Encountered in the Biopharmaceutical Industry
Bo Wang, Shanshan Zhang, Mengyi Chen, Ming Lei, Tian Gao, Wei Fan, Jincui Huang, Xiaolin Cao
PDA Journal of Pharmaceutical Science and Technology Sep 2024, 78 (5) 586-603; DOI: 10.5731/pdajpst.2023.012894
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Particle Identification and Root Cause Analysis
    • Conclusion
    • Conflict of Interest Declaration
    • Acknowledgements
    • Footnotes
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Analysis of Virus Clearance for Biotechnology Manufacturing Processes from Early to Late Phase Development
  • Coring and Fragmentation of Elastomeric Needle Shield in a Pre-Filled Syringe
  • Worldwide Regulatory Reliance: Results of an Executed Chemistry, Manufacturing, and Control Post-Approval Change Pilot
Show more Research

Similar Articles

Keywords

  • Visible particles
  • Extrinsic particles
  • Intrinsic particles
  • Inherent particles
  • Particle identification
  • Root cause analysis
  • Optical microscopy
  • Infrared microscopy
  • Raman microscopy
  • Scanning electron microscopy
  • Energy dispersive X-ray spectroscopy
  • Elemental analysis

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire
Alerts for this Article
Sign In to Email Alerts with your Email Address
Email this Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Identification and Root Cause Analysis of the Visible Particles Commonly Encountered in the Biopharmaceutical Industry
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
13 + 2 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Identification and Root Cause Analysis of the Visible Particles Commonly Encountered in the Biopharmaceutical Industry
Bo Wang, Shanshan Zhang, Mengyi Chen, Ming Lei, Tian Gao, Wei Fan, Jincui Huang, Xiaolin Cao
PDA Journal of Pharmaceutical Science and Technology Sep 2024, 78 (5) 586-603; DOI: 10.5731/pdajpst.2023.012894

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

We use cookies on this site to enhance your user experience

By clicking any link on this page you are giving your consent for us to set cookies.