Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleTechnology/Application

Fluorescence-Based Method and a Device for Rapid Detection of Microbial Contamination

Chandrasekhar Gurramkonda, Karunasri Mupparapu, Rima Abouzeid, Yordan Kostov and Govind Rao
PDA Journal of Pharmaceutical Science and Technology March 2014, 68 (2) 164-171; DOI: https://doi.org/10.5731/pdajpst.2014.00951
Chandrasekhar Gurramkonda
Center for Advanced Sensor Technology and Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Karunasri Mupparapu
Center for Advanced Sensor Technology and Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rima Abouzeid
Center for Advanced Sensor Technology and Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yordan Kostov
Center for Advanced Sensor Technology and Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: kostov@umbc.edu
Govind Rao
Center for Advanced Sensor Technology and Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Hobson N. S.,
    2. Tothill I.,
    3. Turner A. P.
    Microbial detection. Biosens. Bioelectron. 1996, 11(5), 455–477.
    OpenUrlCrossRefPubMed
  2. 2.↵
    1. Pettit A. C.,
    2. Kropski J. A.,
    3. Castilho J. L.,
    4. Schmitz J. E.,
    5. Rauch C. A.,
    6. Mobley B. C.,
    7. Wang X. J.,
    8. Spires S. S.,
    9. Pugh M. E.
    The index case for the fungal meningitis outbreak in the United States. N. Engl. J. Med. 2012, 367(22), 2119–2125.
    OpenUrlCrossRefPubMedWeb of Science
  3. 3.↵
    1. Jimenez L.,
    2. Smalls S.,
    3. Ignar R.
    Use of PCR analysis for detecting low levels of bacteria and mold contamination in pharmaceutical samples. J. Microbiol. Methods 2000, 41(3), 259–265.
    OpenUrlPubMed
  4. 4.↵
    1. Estes C.,
    2. Duncan A.,
    3. Wade B.,
    4. Lloyd C.,
    5. Ellis W. Jr..,
    6. Powers L.
    Reagentless detection of microorganisms by intrinsic fluorescence. Biosens. Bioelectr. 2003, 18(5), 511–519.
    OpenUrlPubMed
  5. 5.↵
    1. Bapat P.,
    2. Nandy S. K.,
    3. Wangikar P.,
    4. Venkatesh K. V.
    Quantification of metabolically active biomass using Methylene Blue dye Reduction Test (MBRT): measurement of CFU in about 200 s. J. Microbiol. Methods 2006, 65(1),107–116.
    OpenUrlPubMed
  6. 6.↵
    1. Sarker S. D.,
    2. Nahar L.,
    3. Kumarasamy Y.
    Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007, 42(4), 321–324.
    OpenUrlCrossRefPubMedWeb of Science
  7. 7.↵
    1. Roth B. L.,
    2. Poot M.,
    3. Yue S. T.,
    4. Millard P. J.
    Bacterial viability and antibiotic susceptibility testing with SYTOX green nucleic acid stain. Appl. Environ. Microbiol. 1997, 63(6), 2421–2431.
    OpenUrlAbstract/FREE Full Text
  8. 8.↵
    1. Auty M. A.,
    2. Gardiner G. E.,
    3. McBrearty S. J.,
    4. O'Sullivan E. O.,
    5. Mulvihill D. M.,
    6. Collins J. K.,
    7. Fitzgerald G. F.,
    8. Stanton C.,
    9. Ross R. P.
    Direct in situ viability assessment of bacteria in probiotic dairy products using viability staining in conjunction with confocal scanning laser microscopy. Appl. Environ. Microbiol. 2001, 67(1), 420–425.
    OpenUrlAbstract/FREE Full Text
  9. 9.↵
    1. Krause M.,
    2. Radt B.,
    3. Rösch P.,
    4. Popp J.
    The investigation of single bacteria by means of fluorescence staining and Raman spectroscopy. Journal of Raman Spectroscopy 2007, 38(4), 369–372.
    OpenUrl
  10. 10.↵
    1. Hewitt C. J.,
    2. Nebe-Von-Caron G.
    The application of multi-parameter flow cytometry to monitor individual microbial cell physiological state. Adv. Biochem. Engn./Biotechnol. 2004, 89, 197–223.
    OpenUrl
  11. 11.↵
    1. Looser V.,
    2. Hammes F.,
    3. Keller M.,
    4. Berney M.,
    5. Kovar K.,
    6. Egli T.
    Flow-cytometric detection of changes in the physiological state of E. coli expressing a heterologous membrane protein during carbon-limited fedbatch cultivation. Biotechnol. Bioeng. 2005, 92(1), 69–78.
    OpenUrlCrossRefPubMed
  12. 12.↵
    1. Berney M.,
    2. Hammes F.,
    3. Bosshard F.,
    4. Weilenmann H. U.,
    5. Egli T.
    Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight Kit in combination with flow cytometry. Appl. Environ. Microbiol. 2007, 73(10), 3283–3290.
    OpenUrlAbstract/FREE Full Text
  13. 13.↵
    1. Venkateswaran K.,
    2. Hattori N.,
    3. La Duc M. T.,
    4. Kern R.
    ATP as a biomarker of viable microorganisms in clean-room facilities. J. Microbiol. Methods 2003, 52(3), 367–377.
    OpenUrlCrossRefPubMed
  14. 14.↵
    1. Monteiro M. C.,
    2. de la Cruz M.,
    3. Cantizani J.,
    4. Moreno C.,
    5. Tormo J. R.,
    6. Mellado E.,
    7. de Lucas J. R.,
    8. Asensio F.,
    9. Valiante V.,
    10. Brakhage A. A.,
    11. Latgé J. P.,
    12. Genilloud O.,
    13. Vicente F. A.
    new approach to drug discovery: high-throughput screening of microbial natural extracts against Aspergillus fumigatus using resazurin. J. Biomol. Screen. 2012, 17(4), 542–549.
    OpenUrlAbstract/FREE Full Text
  15. 15.↵
    1. Kuda T.,
    2. Yano T.
    Colorimetric Alamar Blue assay as a bacterial concentration and spoilage index of marine foods. Food Control 2013, 14(7), 455–461.
    OpenUrl
  16. 16.↵
    1. Vega-Avila E.,
    2. Pugsley M. K.
    An overview of colorimetric assay methods used to assess survival or proliferation of mammalian cells. Proc. West Pharmacol. Soc. 2011, 54, 10–14.
    OpenUrlPubMed
  17. 17.↵
    1. Boyce S. T.,
    2. Anderson B. A.,
    3. Rodriguez-Rilo H. L.
    Quantitative assay for quality assurance of human cells for clinical transplantation. Cell Transplant. 2006, 15(2), 169–174.
    OpenUrlPubMed
  18. 18.↵
    1. Nagaoka M.,
    2. Hagiwara Y.,
    3. Takemura K.,
    4. Murakami Y.,
    5. Li J.,
    6. Duncan S. A.,
    7. Akaike T.
    Design of the artificial acellular feeder layer for the efficient propagation of mouse embryonic stem cells. J. Biol. Chem. 2008, 283(39), 26468–26476.
    OpenUrlAbstract/FREE Full Text
  19. 19.↵
    1. Longhi M. P.,
    2. Wright K.,
    3. Lauder S. N.,
    4. Nowell M. A.,
    5. Jones G. W.,
    6. Godkin A. J.,
    7. Jones S. A.,
    8. Gallimore A. M.
    Interleukin-6 is crucial for recall of influenza-specific memory CD4 T cells. PLoS Pathog. 2008, 4(2), e1000006.
    OpenUrlCrossRefPubMed
  20. 20.↵
    1. Tanaka T. Q.,
    2. Williamson K. C.
    A malaria gametocytocidal assay using oxidoreduction indicator, alamarBlue. Mol. Biochem. Parasitol. 2011, 177(2), 160–163.
    OpenUrlCrossRefPubMed
  21. 21.↵
    1. Hudman D. A.,
    2. Sargentini N. J.
    Resazurin-based assay for screening bacteria for radiation sensitivity. Springerplus. 2013, 2(1), 55.
    OpenUrlPubMed
  22. 22.↵
    1. Fields R. D.,
    2. Lancaster M. V.
    Dual-attribute continuous monitoring of cell proliferation/cytotoxicity. Am. Biotechnol. Lab. 1993, 11(4), 48–50.
    OpenUrlPubMedWeb of Science
  23. 23.↵
    1. Ahmed S. A.,
    2. Gogal R. M. Jr..,
    3. Walsh J. E.
    A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H]thymidine incorporation assay. J. Immunol. Methods 1994, 170(2), 211–224.
    OpenUrlCrossRefPubMedWeb of Science
  24. 24.↵
    1. Al-Nasiry S.,
    2. Geusens N.,
    3. Hanssens M.,
    4. Luyten C.,
    5. Pijnenborg R.
    The use of Alamar Blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. Hum. Reprod. 2007, 22(5). 1304–1309.
    OpenUrlAbstract/FREE Full Text
  25. 25.↵
    1. Barnes S.,
    2. Spenney J. G.
    Stoichiometry of the NADH-oxidoreductase reaction for dehydrogenase determinations. Clin. Chim. Acta 1980, 107(3), 149–154.
    OpenUrlPubMed
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 68 (2)
PDA Journal of Pharmaceutical Science and Technology
Vol. 68, Issue 2
March/April 2014
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Fluorescence-Based Method and a Device for Rapid Detection of Microbial Contamination
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
2 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Fluorescence-Based Method and a Device for Rapid Detection of Microbial Contamination
Chandrasekhar Gurramkonda, Karunasri Mupparapu, Rima Abouzeid, Yordan Kostov, Govind Rao
PDA Journal of Pharmaceutical Science and Technology Mar 2014, 68 (2) 164-171; DOI: 10.5731/pdajpst.2014.00951

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Fluorescence-Based Method and a Device for Rapid Detection of Microbial Contamination
Chandrasekhar Gurramkonda, Karunasri Mupparapu, Rima Abouzeid, Yordan Kostov, Govind Rao
PDA Journal of Pharmaceutical Science and Technology Mar 2014, 68 (2) 164-171; DOI: 10.5731/pdajpst.2014.00951
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results and Discussion
    • Conclusion
    • Conflict of Interest Declaration
    • Acknowledgements
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Validation of Milliflex(R) Quantum for Bioburden Testing of Pharmaceutical Products
  • Google Scholar

More in this TOC Section

  • Using Sensitivity Analysis to Simplify the Virus Safety Factor Calculation in the Manufacture of Biopharmaceuticals
  • Rapid Sterility Test Systems in the Pharmaceutical Industry: Applying a Structured Approach to their Evaluation, Validation and Global Implementation
  • Development and Qualification of Visible Particle Load Analysis Methods for Injectable Drug Product Primary Packaging Components
Show more Technology/Application

Similar Articles

Keywords

  • Microbial contamination
  • Rapid detection
  • Resazurin
  • Fluorescence
  • Portable fluorometer

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2023 PDA Journal of Pharmaceutical Science and Technology ISSN: 1079-7440

Powered by HighWire