Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Review ArticleReview

Polymerase Chain Reaction/Rapid Methods Are Gaining a Foothold in Developing Countries

Suzan Mohammed Ragheb and Luis Jimenez
PDA Journal of Pharmaceutical Science and Technology May 2014, 68 (3) 239-255; DOI: https://doi.org/10.5731/pdajpst.2014.00979
Suzan Mohammed Ragheb
Department of Biotechnology, The Nile Company for Pharmaceuticals and Chemical Industries, Cairo, Egypt; and Biology and Horticulture Department, Bergen Community College, Paramus, NJ, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: drsuzanragheb@yahoo.com
Luis Jimenez
Department of Biotechnology, The Nile Company for Pharmaceuticals and Chemical Industries, Cairo, Egypt; and Biology and Horticulture Department, Bergen Community College, Paramus, NJ, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Eickhoff T. C.
    Nosocomial salmonellosis due to carmine. Ann. Int. Med. 1967, 66 (4), 813–814.
    OpenUrlPubMed
  2. 2.↵
    1. Lang D. J.,
    2. Kunz L. J.,
    3. Martin A. R.,
    4. Schroeder S. A.,
    5. Thomson L. A.
    Carmine as a source of nosocomial salmonellosis. New Engl. J. Med. 1967, 276 (15), 829–832.
    OpenUrlPubMedWeb of Science
  3. 3.↵
    1. Kallings L. O.,
    2. Ringertz O.,
    3. Silverstolpe L.
    Microbiological contamination of medical preparations. Acta Pharm. Suec. 1966, 3 (3), 219–228.
    OpenUrlPubMed
  4. 4.↵
    1. Glencross E. J. G.
    Pancreatin as a source of hospital-acquired salmonellosis. Br. Med. J. 1972, 2 (5810), 2376–2378.
    OpenUrl
  5. 5.↵
    1. Hills S.
    The isolation of Cl. tetani from infected talc. NZ Med. J. 1946, 45 (249), 419–423.
    OpenUrlPubMed
  6. 6.↵
    1. Tremewan H. C.
    Tetanus neonatorum in New Zealand. NZ Med. J. 1946, 45, 312.
    OpenUrlPubMed
  7. 7.↵
    1. Parrott P. L.,
    2. Terry P. M.,
    3. Whitworth E. N.,
    4. Frawley L. W.,
    5. Coble R. S.,
    6. Wachsmuth I. K.,
    7. McGowan J. E.
    Pseudomonas aeruginosa peritonitis associated with contaminated poloxamer-iodine solution. Lancet 1982, 2 (8300), 683–685.
    OpenUrlPubMed
  8. 8.↵
    1. Berkelman R. L.,
    2. Anderson R. L.,
    3. Davis B. J.,
    4. Highsmith A. K.,
    5. Petersen N. J.,
    6. Bond W. W.,
    7. Cook E. H.,
    8. Mackel D. C.,
    9. Favero M. S.,
    10. Martone W. J.
    Intrinsic bacterial contamination of a commercial iodophor solution: investigation of the implicated manufacturing plant. Appl. Environ. Microbiol. 1984, 47 (4), 752–256.
    OpenUrlAbstract/FREE Full Text
  9. 9.↵
    1. Safranek T. J.,
    2. Jarvis W. R.,
    3. Carson L. A.,
    4. Cusick L. B.,
    5. Bland L. A.,
    6. Swenson J. M.,
    7. Silcox V. A.
    Mycobacterium chelonae wound infections after plastic surgery employing contaminated gentian violet skin-marking solution. New Engl. J. Med. 1987, 317 (4), 197–201.
    OpenUrlCrossRefPubMedWeb of Science
  10. 10.↵
    1. Wilson L. A.,
    2. Ahearn D. G.
    Pseudomonas-induced corneal ulcers associated with contaminated eye mascaras. Am. J. Ophthalmol. 1977, 84 (1), 112–119.
    OpenUrlPubMedWeb of Science
  11. 11.↵
    1. Bruch C. W.
    Objectionable microorganisms in non-sterile drugs and cosmetics. Drug Cosmet. Ind. 1972, 111 (4), 51.
    OpenUrl
  12. 12.↵
    1. Madani T. A.,
    2. Alsaedi S.,
    3. James L.,
    4. Eldeek B. S.,
    5. Jiman-Fatani A. A.,
    6. Alawi M. M.,
    7. Marwan D.,
    8. Cudal M.,
    9. Macapagal M.,
    10. Bahlas R.,
    11. Farouq M.
    Serratia marcescens–contaminated baby shampoo causing an outbreak among newborns at King Abdulaziz University Hospital, Jeddah, Saudi Arabia. J. Hosp. Infect. 2011, 78 (1), 16–19.
    OpenUrlPubMed
  13. 13.↵
    1. Wong S.,
    2. Street D.,
    3. Delgado S. I.,
    4. Klontz K. C.
    Recalls of foods and cosmetics due to microbial contamination reported to the U.S. Food and Drug Administration. J. Food Prot. 2000, 63 (8), 1113–1116.
    OpenUrlPubMed
  14. 14.↵
    1. Jimenez L.
    Microbial diversity in pharmaceutical product recalls and environments. PDA J.Pharm. Sci. Technol. 2007, 61 (5), 383–399.
    OpenUrl
  15. 15.↵
    1. Lundov M. D.,
    2. Zachariae C.
    Recalls of microbiologically contaminated cosmetics in EU from 2005 to May 2008. Int. J. Cosmet. Sci. 2008, 30 (6), 471–474.
    OpenUrlPubMed
  16. 16.↵
    1. Sutton S.,
    2. Jimenez L.
    A review of reported recalls involving microbiological control 2004–2011 with emphasis on FDA considerations of “objectionable organisms”. Am. Pharm. Rev. 2012, 15 (1), 42–57.
    OpenUrl
  17. 17.↵
    1. Abdelaziz A. A.,
    2. Ashour M. S.
    Microbial contamination of a hexetidine mouth wash. Zentralbl. Bakteriol. Mikrobiol. Hyg., B 1987, 184 (3–4), 262–268.
    OpenUrlPubMed
  18. 18.↵
    1. Abdelaziz A. A.,
    2. Alkofahi A.
    Microbiological profile of selected samples of “Al-Kohl” eye cosmetics in northern Jordanian provinces before and after use. Zentralbl. Bakteriol. Mikrobiol. Hyg., B 1989, 187 (3), 244–253.
    OpenUrlPubMed
  19. 19.↵
    1. Abdelaziz A. A.,
    2. Ashour M. S.,
    3. Hefni H.,
    4. El-Tayeb O. M.
    Microbial contamination of cosmetics and personal care items in Egypt—eye shadows, mascaras and face creams. J Clin. Pharm. Ther. 1989, 14 (1), 21–28.
    OpenUrlPubMed
  20. 20.↵
    1. Abdelaziz A. A.,
    2. Ashour M. S.,
    3. Hefni H.,
    4. El-Tayeb O. M.
    Microbial contamination of cosmetics and personal care items in Egypt—shaving creams and shampoos. J. Clin. Pharm. Ther. 1989, 14 (1), 29–34.
    OpenUrlPubMed
  21. 21.↵
    1. Ashour M. S.,
    2. Abdelaziz A. A.,
    3. El-Tayeb O. M.,
    4. Hefnai H.
    Microbial Contamination of cosmetics and personal care items in Egypt. I. Contamination of toothpastes and mouthwashes. J. Soc. Cosmet. Chem. 1987, 38 (6), 435–441.
    OpenUrl
  22. 22.↵
    1. Ashour M. S.,
    2. Abdelaziz A. A.,
    3. Hefnai H.,
    4. El-Tayeb O. M.
    Microbial contamination of cosmetics and personal care items in Egypt—body lotions and talcum powders. J. Clin. Pharm. Ther. 1989, 14 (3), 207–212.
    OpenUrlPubMed
  23. 23.↵
    1. Jimenez L.
    1. Jimenez L.
    Microbial Limits. In Microbial Contamination Control in the Pharmaceutical Industry. Drugs and Pharmaceutical Sciences; Jimenez L., Ed.; Marcel Dekker, Inc.: New York, 2004; Vol. 142.
  24. 24.↵
    1. Maukonen J.,
    2. Mättö J.,
    3. Wirtanen G.,
    4. Raaska L.,
    5. Mattila-Sandholm T.,
    6. Saarela M.
    Methodologies for the characterization of microbes in industrial environments: a review. J. Ind. Microbiol. Biotechnol. 2003, 30 (6), 327–356.
    OpenUrlPubMed
  25. 25.↵
    1. Maukonen J.,
    2. Saarela M.
    Microbial communities in industrial environment. Curr. Opin. Microbiol. 2009, 12 (3), 238–243.
    OpenUrlPubMed
  26. 26.↵
    1. Morris H. C.
    The benefits of rapid microbiological testing of finished products using ATP bioluminescence. Int. J. Cosmet. Sci. 1998, 20 (1), 63–67.
    OpenUrlPubMed
  27. 27.↵
    1. Ignar R.,
    2. English D.,
    3. Jimenez L.
    Rapid detection of microbial contamination in triclosan and high fluoride dentifrices using an ATP bioluminescence. J. Rapid Methods Automat. Microbiol. 1998, 6 (1), 51–58.
    OpenUrl
  28. 28.↵
    1. Jimenez L.
    Adenosine triphosphate bioluminescence analysis for rapid screening of microbial contamination in non-sterile pharmaceutical samples. PDA J. Pharm. Sci. Technol. 2004, 58 (3), 159–168.
    OpenUrlAbstract/FREE Full Text
  29. 29.↵
    1. Connolly P.,
    2. Bloomfield S. F.,
    3. Denyer S. P.
    A study of the use of rapid methods for preservative efficacy testing of pharmaceuticals and cosmetics. J. Appl. Microbiol. 1993, 75 (5), 456–462.
    OpenUrlPubMed
  30. 30.↵
    1. Jimenez L.,
    2. Rana N.,
    3. Amaraj J.,
    4. Walker K.,
    5. Travers K.
    Validation of the BacT/ALERT® 3D system for rapid sterility testing of biopharmaceutical samples. PDA J. Pharm. Sci. Technol. 2012, 66 (1), 38–54.
    OpenUrlAbstract/FREE Full Text
  31. 31.↵
    1. Miller M. J.,
    2. Walsh M. R.,
    3. Shrake J. L.,
    4. Dukes R. E.,
    5. Hill D. B.
    Evaluation of the BioVigilant IMD-A, a novel optical spectroscopy technology for the continuous and real-time environmental monitoring of viable and nonviable particles. Part II. Case studies in environmental monitoring during aseptic filling, intervention assessments, and glove integrity testing in manufacturing isolators. PDA J. Pharm. Sci. Technol. 2009, 63 (3), 259–283.
    OpenUrlAbstract/FREE Full Text
  32. 32.↵
    1. Kawai M.,
    2. Yamaguchi N.,
    3. Nasu N.
    Rapid enumeration of physiologically active bacteria in purified water used in the pharmaceutical manufacturing process. J. Appl. Microbiol. 1999, 86 (3), 496–504.
    OpenUrlCrossRefPubMed
  33. 33.↵
    1. Nakajima K.,
    2. Nonaka K.,
    3. Yamamoto K.,
    4. Yamaguchi N.,
    5. Tani K.,
    6. Nasu M.
    Rapid monitoring of microbial contamination on herbal medicines by fluorescent staining method. Lett. Appl. Microbiol. 2005, 40 (2), 128–132.
    OpenUrlCrossRefPubMedWeb of Science
  34. 34.↵
    1. Wallner G,
    2. Tillmann D,
    3. Haberer K.
    Evaluation of the ChemScan system for rapid microbiological analysis of pharmaceutical water. PDA J. Pharm. Sci. Technol. 1999, 53 (2), 70–74.
    OpenUrlAbstract/FREE Full Text
  35. 35.↵
    1. Costanzo S. P.,
    2. Borazjani R. N.,
    3. McCormick P. J.
    Validation of the Scan RDI for routine microbiological analysis of process water. PDA J. Pharm. Sci. Technol. 2002, 56 (4), 206–219.
    OpenUrlAbstract/FREE Full Text
  36. 36.↵
    1. London R.,
    2. Schwedock J.,
    3. Sage A.,
    4. Valley H.,
    5. Meadows J.,
    6. Wadington M.,
    7. Straus D.
    An automated system for rapid non-destructive enumeration of growing microbes. PloS one 2010, 5 (1), e8609.
    OpenUrlCrossRefPubMed
  37. 37.↵
    1. English D.,
    2. Scalici C.,
    3. Hamilton J.,
    4. Destro C.,
    5. Jimenez L.
    Evaluation of the TECRA™ visual immunoassay for detecting Staphylococcus aureus in cosmetic/pharmaceutical raw materials and finished products. J. Rapid Methods Automat. Microbiol. 1999, 7 (3), 193–203.
    OpenUrl
  38. 38.↵
    1. Hughes D.,
    2. Dailianis A.,
    3. Hill L.
    An immunoassay method for rapid detection of Staphylococcus aureus in cosmetics, pharmaceutical products, and raw materials. J. AOAC Int. 1999, 82 (5), 1171–1174.
    OpenUrlPubMed
  39. 39.↵
    1. Erlich H. A.,
    2. Gelfand D.,
    3. Sninsky J. J.
    Recent advances in the polymerase chain reaction. Science 1991, 252 (5013), 1643–1651.
    OpenUrlAbstract/FREE Full Text
  40. 40.↵
    1. Persing D. H.,
    2. Smith T. F.,
    3. Tenover F. C.,
    4. White T. J.
    1. McCreedy B. J.,
    2. Callaway T. H.
    Laboratory Design and Work Flow. In Diagnostic Molecular Microbiology. Principles and Applications, Persing D. H., Smith T. F., Tenover F. C., White T. J., Eds.; American Society for Microbiology: Washington, DC, 1993; pp 149–159.
  41. 41.↵
    1. Harris E.
    A Low-Cost Approach to PCR: Appropriate Transfer of Biomolecular Techniques; Oxford University Press Inc.: New York, 1998.
  42. 42.↵
    1. Maurer J.
    1. Sanchez S.
    Making PCR a Normal Routine of the Food Microbiology Lab. In PCR Methods in Foods, Maurer J., Ed.; Springer: New York, 2006; pp 51–68.
  43. 43.↵
    1. Sutton S.
    1. Cundell T.
    Laboratory Design and Layout for Microbial Identification. In Laboratory Design—Establishing the Facility and Management Structure, Sutton S., Ed.; Parenteral Drug Association: Bethesda, MD, 2012; pp 323–334.
  44. 44.↵
    1. Dieffenbach C. W.,
    2. Dveksler G. S.
    Setting up a PCR laboratory. PCR Methods Appl. 1993, 3 (2), S2–S7.
    OpenUrlCrossRefPubMedWeb of Science
  45. 45.↵
    1. Wilson I. G.
    Inhibition and facilitation of nucleic acid amplification. Appl. Environ. Microbiol. 1997, 63 (10), 3741–3751.
    OpenUrlFREE Full Text
  46. 46.↵
    1. Jimenez L.
    Simultaneous PCR detection of bacteria and mold DNA sequences in pharmaceutical samples by using a gradient thermocycler. J. Rapid Methods Automat. Microbiol. 2001, 9 (4), 263–270.
    OpenUrl
  47. 47.↵
    1. Sobities C. L.,
    2. Bennett A. R.,
    3. Betts R. P.,
    4. Greenwood D. J.,
    5. Banks J. G.
    Evaluation of BAX™ for screening/Salmonella. A rapid PCR-based method for the analysis of foods and food-borne Salmonella. International Association of Milk, Food and Environmental Sanitarians, June–July, Seattle, WA. 1996.
  48. 48.↵
    1. Hochberg A. M.,
    2. Gerhardt P. N.,
    3. Cao T. K.,
    4. Ocasio W.,
    5. Barbour W. M.,
    6. Mrozinski P. M.
    Sensitivity and specificity of the test kit BAX for screening/E. coli O157:H7 in ground beef: independent laboratory study. J. AOAC Int. 2000, 83 (6), 1349–1356.
    OpenUrlPubMed
  49. 49.↵
    1. Norton D. M.,
    2. McCamey M. A.,
    3. Gall K. L.,
    4. Scarlett J. M.,
    5. Boor K. J.,
    6. Wiedmann M.
    Molecular studies on the ecology of Listeria monocytogenes in the smoked fish processing industry. Appl. Environ. Microbiol. 2001, 67 (1), 198–205.
    OpenUrlAbstract/FREE Full Text
  50. 50.↵
    1. Bhagwat A. A.
    Simultaneous detection of Escherichia coli O157:H7, Listeria monocytogenes and Salmonella strains by real-time PCR. Int. J. Food Microbiol. 2003, 84 (2), 217–224.
    OpenUrlPubMed
  51. 51.↵
    1. Jaffe R. I.,
    2. Lane J. D.,
    3. Albury S. V.,
    4. Niemeyer D. M.
    Rapid extraction from and direct identification in clinical samples of methicillin-resistant staphylococci using the PCR. J. Clin. Microbiol. 2000, 38 (9), 3407–3412.
    OpenUrlAbstract/FREE Full Text
  52. 52.↵
    1. Rosenquist H.,
    2. Smidt L.,
    3. Andersen S. R.,
    4. Jensen G. B.,
    5. Wilcks A.
    Occurrence and significance of Bacillus cereus and Bacillus thuringiensis in ready-to-eat food. FEMS Microbiol. Lett. 2005, 250 (1), 129–136.
    OpenUrlAbstract/FREE Full Text
  53. 53.↵
    1. Jimenez L.,
    2. Smalls S.,
    3. Scalici C.,
    4. Bosko Y.,
    5. Ignar R.,
    6. English D.
    Detection of Salmonella spp. contamination in raw materials and cosmetics/pharmaceutical products using the BAX™ system, a PCR-based assay. J. Rapid Methods Automat. Microbiol. 1998, 6 (1), 67–76.
    OpenUrl
  54. 54.↵
    1. Jimenez L.,
    2. Scalici C.,
    3. Smalls S.,
    4. Bosko Y.,
    5. Ignar R.
    PCR detection of Salmonella typhimurium in pharmaceutical raw materials and products contaminated with a mixed bacterial culture using the BAX system. PDA J. Pharm. Sci. Technol. 2001, 55 (5), 286–289.
    OpenUrlAbstract/FREE Full Text
  55. 55.↵
    1. Jimenez L.,
    2. Ignar R.,
    3. Smalls S.,
    4. Grech P.,
    5. Hamilton J.,
    6. Bosko Y.,
    7. English D.
    Molecular detection of bacterial indicators in cosmetic/pharmaceuticals and raw materials. J. Industrial Microbiol. Biotechnol. 1999, 22 (2), 93–95.
    OpenUrl
  56. 56.↵
    1. Jimenez L.,
    2. Smalls S.,
    3. Ignar R.
    Use of PCR analysis for detecting low levels of bacteria and mold contamination in pharmaceutical samples. J. Microbiol. Methods 2000, 41 (3), 259–265.
    OpenUrlCrossRefPubMed
  57. 57.↵
    1. Jimenez L.,
    2. Smalls S.
    Molecular detection of Burkholderia cepacia in toiletry, cosmetic, and pharmaceutical raw materials and finished products. J. AOAC Int. 2000, 83 (4), 963–966.
    OpenUrlPubMed
  58. 58.↵
    1. Merker P.,
    2. Grohmann L.,
    3. Petersen R.,
    4. Ladewig J.,
    5. Gerbling K. P.,
    6. Lauter F. R.
    Alternative microbial testing: a novel DNA-based detection system for specified microorganisms in pharmaceutical preparations. PDA J. Pharm. Sci. Technol. 2000, 54 (6), 470–477.
    OpenUrlAbstract/FREE Full Text
  59. 59.↵
    1. Samadi N.,
    2. ALvandi M.,
    3. Reza Fazeli M.,
    4. Azizi E.,
    5. Mehrgan H.,
    6. Naseri M.
    PCR-based detection of low levels of Staphylococcus aureus contamination in pharmaceutical preparations. J. Biological Sci. 2007, 7 (2), 359–363.
    OpenUrl
  60. 60.↵
    1. Çarɩkçɩ A. I.,
    2. Uçar F.,
    3. Yalçɩn H.
    Kozmetik ürünlerde bakteriyal ve fungal kompozisyonun klasik yöntemler ve PCR yöntemi kullanɩlarak saptanmasɩ. Elektronik Mikrobiyoloji Dergisi 2008, 6 (1), 1–16.
    OpenUrl
  61. 61.↵
    1. Karanam V. R.,
    2. Reddy H. P.,
    3. Subba Raju B. V.,
    4. Rao J. C.,
    5. Kavikishore P. B.,
    6. Vijayalakshmi M.
    Detection of indicator pathogens from pharmaceutical finished products and raw materials using multiplex PCR and comparison with conventional microbiological methods. J. Ind. Microbiol. Biotechnol. 2008, 35 (9), 1007–1018.
    OpenUrlPubMed
  62. 62.↵
    1. Farajnia S.,
    2. Hassan M.,
    3. Hallaj Nezhadi S.,
    4. Mohammadnejad L.,
    5. Milani M.,
    6. Lotfipour F.
    Determination of indicator bacteria in pharmaceutical samples by multiplex PCR. J. Rapid Methods Automat. Microbiol. 2009, 17 (3), 328–338.
    OpenUrl
  63. 63.↵
    1. Škof A.,
    2. Poljak M.,
    3. Krbavcic A.
    Real-time polymerase chain reaction for detection of Staphylococcus aureus and Pseudomonas aeruginosa in pharmaceutical products for topical use. J. Rapid Methods Automat. Microbiol. 2004, 12 (3), 169–183.
    OpenUrl
  64. 64.↵
    1. Vijayakumar R.,
    2. Kannan V. V.,
    3. Manoharan C.
    Molecular diagnosis of Pseudomonas aeruginosa contamination in opthalmic viscosurgical devices. Int. J. Res. Pharm. Sci. 2011, 2 (4), 579–584.
    OpenUrl
  65. 65.↵
    1. Roux K. H.
    Optimization and troubleshooting in PCR. PCR Methods Appl. 1995, 4 (5), S185–S194.
    OpenUrlCrossRefPubMedWeb of Science
  66. 66.↵
    1. Sambrook J.,
    2. Russell D. W.
    Molecular Cloning: A Laboratory Manual, 3rd ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, 2001.
  67. 67.↵
    1. Surzycki S.
    Basic Techniques in Molecular Biology; Springer-Verlag: Berlin, 2000.
  68. 68.↵
    1. Thong K. L.,
    2. Lai M. Y.,
    3. The C. S.,
    4. Chua K. H.
    Simultaneous detection of methicillin-resistant Staphylococcus aureus, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa by multiplex PCR. Trop. Biomed. 2011, 28 (1), 21–31.
    OpenUrlPubMed
  69. 69.↵
    1. Altwegg M.
    General problems associated with diagnostic applications of amplification methods. J. Microbiol. Methods 1995, 23 (1), 21–30.
    OpenUrl
  70. 70.↵
    1. Henegariu O.,
    2. Heerema N. A.,
    3. Dlouhy S. R.,
    4. Vance G. H.,
    5. Vogt P. H.
    Multiplex PCR: critical parameters and step-by-step protocol. Biotechniques 1997, 23 (3), 504–511.
    OpenUrlPubMedWeb of Science
  71. 71.↵
    1. Johnson J. R.
    Development of polymerase chain reaction–based assays for bacterial gene detection. J. Microbiol. Methods 2000, 41 (3), 201–209.
    OpenUrlCrossRefPubMed
  72. 72.↵
    1. Ragheb S. M.,
    2. Yassin A. S.,
    3. Amin M. A.
    The application of uniplex, duplex, and multiplex PCR for the absence of specified microorganism testing of pharmaceutical excipients and drug products. PDA J. Pharm. Sci. Technol. 2012, 66 (4), 307–17.
    OpenUrlAbstract/FREE Full Text
  73. 73.↵
    1. Patel J. B.
    16S rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory. Molecular Diagnosis 2001, 6 (4), 313–321.
    OpenUrlCrossRefPubMedWeb of Science
  74. 74.↵
    1. Jimenez L.,
    2. Ignar R.,
    3. D'Aiello R.,
    4. Grech P.
    Use of PCR analysis for sterility testing in pharmaceutical environments. J. Rapid Methods Automat. Microbiol. 2000, 8 (1), 11–20.
    OpenUrl
  75. 75.↵
    1. Kawai M.,
    2. Matsutera E.,
    3. Kanda H.,
    4. Yamaguchi N.,
    5. Tani K.,
    6. Nasu M.
    16S ribosomal DNA-based analysis of bacterial diversity in purified water used in pharmaceutical manufacturing processes by PCR and denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 2002, 68 (2), 699–704.
    OpenUrlAbstract/FREE Full Text
  76. 76.↵
    1. Kawai M.,
    2. Yamagishi J.,
    3. Yamaguchi N.,
    4. Tani K.,
    5. Nasu M.
    Bacterial population dynamics and community structure in a pharmaceutical manufacturing water supply system determined by real-time PCR and PCR-denaturing gradient gel electrophoresis. J. Appl. Microbiol. 2004, 97 (6), 1123–1131.
    OpenUrlCrossRefPubMed
  77. 77.↵
    1. Jimenez L.,
    2. Bosko Y.,
    3. Smalls S.,
    4. Ignar R.,
    5. English D.
    Molecular detection and identification of Aspergillus niger contamination in cosmetic/pharmaceutical raw materials and finished products. J. Rapid Methods Automat. Microbiol. 1999, 7 (1), 39–46.
    OpenUrl
  78. 78.↵
    1. Markoulatos P.,
    2. Siafakas N.,
    3. Moncany M.
    Multiplex polymerase chain reaction: a practical approach. J. Clin. Lab. Anal. 2002, 16 (1), 47–51.
    OpenUrlCrossRefPubMedWeb of Science
  79. 79.↵
    U.S. Pharmacopeia, Vol. 35; Pharmacopeial Convention: Rockville, MD, 2012.
  80. 80.↵
    1. Hoorfar J.,
    2. Wolffs P.,
    3. Rådström P.
    Diagnostic PCR: validation and sample preparation are two sides of the same coin. APMIS 2004, 112 (11–12), 808–814.
    OpenUrlCrossRefPubMedWeb of Science
  81. 81.↵
    1. Miller M. J.
    Developing a validation strategy for rapid microbiological methods. Am. Pharm. Rev. 2010, 13 (3), 28–33.
    OpenUrl
  82. 82.↵
    1. Malorny B.,
    2. Tassios P. T.,
    3. Rådström P.,
    4. Cook N.,
    5. Wagner M.,
    6. Hoorfar J.
    Standardization of diagnostic PCR for the detection of foodborne pathogens. Int. J. Food Microbiol. 2003, 83 (1), 39–48.
    OpenUrlCrossRefPubMedWeb of Science
  83. 83.↵
    Parenteral Drug Association. PDA Technical Report No. 33: Evaluation, Validation, and Implementation of New Microbiological Testing Methods. PDA: Bethesda, MD, 2000.
  84. 84.↵
    European Pharmacopoeia, 7th ed.; Council of Europe: Strasbourg, France, 2011.
  85. 85.↵
    1. Jimenez L.,
    2. Rana N.,
    3. Travers K.,
    4. Santiago O.,
    5. Amalraj J.,
    6. Walker K.
    Rapid quantitative endotoxin analysis of biopharmaceutical samples using a multi-cartridge system. Am. Pharm. Rev. 2012, 15 (5), 45–63.
    OpenUrl
  86. 86.↵
    1. Volokhov D. V.,
    2. Graham L. J.,
    3. Brorson K. A.,
    4. Chizhikov V. E.
    Mycoplasma testing of cell substrates and biologics: review of alternative non-microbiological techniques. Mol. Cell Probes 2011, 25 (2–3), 69–77.
    OpenUrlCrossRefPubMed
  87. 87.↵
    Japanese Pharmacopoeia, Vol. XV; General Information/Chapter 9—Mycoplasma Testing for Cell Substrates Used for the Production of Biotechnological/Biological Products, 2001.
  88. 88.
    Parenteral Drug Association. PDA Technical Report No. 50: Alternative Methods for Mycoplasma Testing. PDA: Bethesda, MD, 2010.
  89. 89.
    FDA, Center for Biologics Evaluation and Research. Points to Consider in “Characterization of Cell Lines Used to Produce Biologicals.” U.S. Department of Health and Human Services: Rockville, MD, 2003.
  90. 90.↵
    Code of Federal Regulations, 2009. Title 21, § 610.30.
  91. 91.↵
    1. Brown D. B.,
    2. Newman J. A.,
    3. Gutekunst J. M.,
    4. McManus J. B.,
    5. Letham D. L. D.,
    6. Weber T. J.,
    7. Mamalat G.,
    8. Bruk N.,
    9. Montgomery L. K.,
    10. Thompson S.,
    11. Hantman M. J.
    Assay validation for rapid detection of mycoplasma contamination. BioProcess Int. 2009, 7 (4), 30–40.
    OpenUrl
  92. 92.↵
    1. Sasaki T.
    Compendial requirements for the detection of Mycoplasma contamination in cell cultures. PDA J. GMP Validation Japan 2009, 11 (2), 49–55.
    OpenUrl
  93. 93.↵
    1. Deutschmann S. M.,
    2. Kavermann H.,
    3. Knack Y.
    Validation of a NAT-based Mycoplasma assay according European Pharmacopoiea. Biologicals 2010, 38 (2), 238–248.
    OpenUrlPubMed
  94. 94.↵
    1. Duguid J.
    Top ten validation considerations when implementing a rapid mycoplasma test. Am. Pharm. Rev. 2010, 13 (4), 26–31.
    OpenUrl
  95. 95.↵
    1. Nims R. W.,
    2. Meyers E.
    USP <63> Mycoplasma Tests: a new regulation for mycoplasma testing. What you need to know about USP chapter <63>. BioPharm Int. 2010, 23 (8).
  96. 96.↵
    1. Zhi Y.,
    2. Mayhew A.,
    3. Seng N.,
    4. Takle G. B.
    Validation of a PCR method for the detection of mycoplasmas according to European Pharmacopoeia section 2.6.7. Biologicals 2010, 38 (2), 232–237.
    OpenUrlPubMed
  97. 97.↵
    1. Dabrazhynetskaya A.,
    2. Volokhov D. V.,
    3. David S. W.,
    4. Ikonomi P.,
    5. Brewer A.,
    6. Chang A.,
    7. Chizhikov V.
    Preparation of reference strains for validation and comparison of Mycoplasma testing methods. J. Appl. Microbiol. 2011, 111 (4), 904–914.
    OpenUrlPubMed
  98. 98.↵
    1. De Clerck E.,
    2. Vanhoutte T.,
    3. Hebb T.,
    4. Geerinck J.,
    5. Devos J.,
    6. De Vos P.
    Isolation, characterization, and identification of bacterial contaminants in semifinal gelatin extracts. Appl. Environ. Microbiol. 2004, 70 (6), 3664–3672.
    OpenUrlAbstract/FREE Full Text
  99. 99.↵
    1. De Clerck E.,
    2. Rodríguez-Díaz M.,
    3. Vanhoutte T.,
    4. Heyrman J.,
    5. Logan N. A.,
    6. De Vos P.
    Anoxybacillus contaminans sp. nov. and Bacillus gelatini sp. nov., isolated from contaminated gelatin batches. Int. J. Syst. Evol. Microbiol. 2004, 54 (3), 941–946.
    OpenUrlAbstract/FREE Full Text
  100. 100.↵
    1. De Clerck E.,
    2. Van Mol K.,
    3. Jannes G.,
    4. Rossau R.,
    5. De Vos P.
    Design of a 5′ exonuclease-based real-time PCR assay for simultaneous detection of Bacillus licheniformis, members of the ‘B. cereus group’ and B. fumarioli in gelatine. Lett. Appl. Microbiol. 2004, 39 (1), 109–115.
    OpenUrlPubMed
  101. 101.↵
    1. Sharma A.,
    2. Dour P.,
    3. Gupta P.
    Screening of enterobacterial contamination during gelatin production and its effect on pharmaceutical grade. World J. Microbiol. Biotechnol. 2006, 22 (10), 1049–1054.
    OpenUrl
  102. 102.↵
    1. Denoya C. D.
    Nucleic acid amplification-based rapid microbiological methods: Are these technologies ready for deployment in the pharmaceutical industry? Am. Pharm. Rev. 2009, 12 (4), 12–21.
    OpenUrl
  103. 103.↵
    1. Fittipaldi M.,
    2. Nocker A.,
    3. Codony F.
    Progress in understanding preferential detection of live cells using viability dyes in combination with DNA amplification. J. Microbiol. Methods 2012, 91 (2), 276–289.
    OpenUrlCrossRefPubMedWeb of Science
  104. 104.↵
    1. Rawsthorne H.,
    2. Dock C. N.,
    3. Jaykus L. A.
    PCR-based method using propidium monoazide to distinguish viable from nonviable Bacillus subtilis spores. Appl. Environ. Microbiol. 2009, 75 (9), 2936–2939.
    OpenUrlAbstract/FREE Full Text
  105. 105.↵
    1. Wagner A. O.,
    2. Malin C.,
    3. Knapp B. A,
    4. Illmer P.
    Removal of free extracellular DNA from environmental samples by ethidium monoazide and propidium monoazide. Appl. Environ. Microbiol. 2008, 74 (8), 2537–2539.
    OpenUrlAbstract/FREE Full Text
  106. 106.↵
    1. Vesper S.,
    2. McKinstry C.,
    3. Hartmann C.,
    4. Neace M.,
    5. Yoder S.,
    6. Vesper A.
    Quantifying fungal viability in air and water samples using quantitative PCR after treatment with propidium monoazide (PMA). J. Microbiol. Methods 2008, 72 (2), 180–184.
    OpenUrlCrossRefPubMedWeb of Science
  107. 107.↵
    1. Kobayashi H.,
    2. Oethinger M.,
    3. Tuohy M. J.,
    4. Hall G. S.,
    5. Bauer T. W.
    Unsuitable distinction between viable and dead Staphylococcus aureus and Staphylococcus epidermidis by ethidium bromide monoazide. Lett. Appl. Microbiol. 2009, 48 (5), 633–638.
    OpenUrlCrossRefPubMed
  108. 108.↵
    1. Schmidlin M.,
    2. Alt M.,
    3. Brodmann P.,
    4. Bagutti C.
    Insufficient distinction between DNA from viable and nonviable Staphylococcus aureus cells in wipe-samples by use of propidium monoazide–PCR. Appl. Biosafety 2010, 15 (4), 180–185.
    OpenUrl
  109. 109.↵
    1. Cook N.
    The use of NASBA for the detection of microbial pathogens in food and environmental samples. J. Microbiol. Methods 2003, 53 (2), 165–174.
    OpenUrlCrossRefPubMedWeb of Science
  110. 110.↵
    1. Keer J. T.,
    2. Birch L.
    Molecular methods for the assessment of bacterial viability. J. Microbiol. Methods 2003, 53 (2), 175–183.
    OpenUrlCrossRefPubMedWeb of Science
  111. 111.↵
    1. Miller M. J.
    Rapid microbiological methods and demonstrating a return on investment: It's easier than you think! Am. Pharm. Rev. 2009, 12 (5), 42–47.
    OpenUrl
  112. 112.↵
    1. Miller M. J.
    Breaking the rapid microbiological method financial barrier: a case study in RMM return on investment and economic justification. BioPharm Int. 2009, 22 (9), 44–53.
    OpenUrl
  113. 113.↵
    1. Gadal P.,
    2. Yvon P.
    Rapid Microbio ROI—calculating scientific benefits as return on investment dollars. Pharmaceutical Formulation & Quality 2009, 11 (3), 44–47.
    OpenUrl
  114. 114.↵
    1. Gray J. C.,
    2. Staerk A.,
    3. Berchtold M.,
    4. Mercier M.,
    5. Neuhaus G.,
    6. Wirth A.
    Introduction of a rapid microbiological method as an alternative to the pharmacopoeial method for the sterility test. Am. Pharm. Rev. 2010, 13 (6), 88–94.
    OpenUrl
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 68 (3)
PDA Journal of Pharmaceutical Science and Technology
Vol. 68, Issue 3
May/June 2014
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Polymerase Chain Reaction/Rapid Methods Are Gaining a Foothold in Developing Countries
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
7 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Polymerase Chain Reaction/Rapid Methods Are Gaining a Foothold in Developing Countries
Suzan Mohammed Ragheb, Luis Jimenez
PDA Journal of Pharmaceutical Science and Technology May 2014, 68 (3) 239-255; DOI: 10.5731/pdajpst.2014.00979

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Polymerase Chain Reaction/Rapid Methods Are Gaining a Foothold in Developing Countries
Suzan Mohammed Ragheb, Luis Jimenez
PDA Journal of Pharmaceutical Science and Technology May 2014, 68 (3) 239-255; DOI: 10.5731/pdajpst.2014.00979
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • 1. Introduction
    • 2. Critical Elements for PCR Applications in the Pharmaceutical Industry
    • 3. Mycoplasma: A Case Study of Pharmaceutical Quality Control and Regulatory Feasibility of Molecular Techniques
    • 4. Microbial Assessment of Pharmaceuticals by Other Molecular Techniques
    • 5. Some Drawbacks Associated with the Application of PCR in the Pharmaceutical Field
    • 6. Conclusion
    • Competing Interests
    • Authors' Information
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • The Role of Microbiologists in Drug Product Development
  • A Risk Assessment and Risk-Based Approach Review of Pre-Use/Post-Sterilization Integrity Testing (PUPSIT)
  • Recommendations for Artificial Intelligence Application in Continued Process Verification: A Journey Toward the Challenges and Benefits of AI in the Biopharmaceutical Industry
Show more Review

Similar Articles

Keywords

  • Microbial Contamination
  • Pharmaceuticals
  • Technology transfer
  • rapid microbiological methods
  • Polymerase chain reaction
  • Validation

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire