Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleResearch

Inhibiting Sterilization-Induced Oxidation of Large Molecule Therapeutics Packaged in Plastic Parenteral Vials

Jeffrey R. Vieregg, Steven J. Martin, Adam P. Breeland, Christopher M. Weikart and Matthew V. Tirrell
PDA Journal of Pharmaceutical Science and Technology January 2018, 72 (1) 35-43; DOI: https://doi.org/10.5731/pdajpst.2017.008011
Jeffrey R. Vieregg
1Institute for Molecular Engineering, University of Chicago, Chicago, IL;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Steven J. Martin
2SiO Medical Products, Auburn, AL; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Adam P. Breeland
2SiO Medical Products, Auburn, AL; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christopher M. Weikart
2SiO Medical Products, Auburn, AL; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Matthew V. Tirrell
1Institute for Molecular Engineering, University of Chicago, Chicago, IL;
3Institute for Molecular Engineering, Argonne National Laboratory, Argonne, IL
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: mtirrell@uchicago.edu
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

For many years, glass has been the default material for parenteral packaging, but the development of advanced plastics such as cyclic olefin polymers and the rapidly increasing importance of biologic drugs have provided new choices, as well as more stringent performance requirements. In particular, many biologics must be stored at non-neutral pH, where glass is susceptible to hydrolysis, metal extraction, and delamination. Plastic containers are not susceptible to these problems, but suffer from higher gas permeability and a propensity for sterilization-induced radical generation, heightening the risk of oxidative damage to sensitive drugs. This study evaluates the properties of a hybrid material, SiOPlas™, in which an ultrathin multilayer coating is applied to the interior of cyclic olefin polymer containers via plasma-enhanced chemical vapor deposition. Our results show that the coating decreases oxygen permeation through the vial walls 33-fold compared to uncoated cyclic olefin polymers, which should allow for improved control of oxygen levels in sensitive formulations. We also measured degradation of two biologic drugs that are known to be sensitive to oxidation, teriparatide and erythropoietin, in gamma and electron beam sterilized SiOPlas™, glass, and uncoated cyclic olefin polymer vials. In both cases, solutions stored in SiOPlas™ vials did not show elevated susceptibility to oxidation compared to either glass or unsterilized controls. Taken together, these results suggest that hybrid materials such as SiOPlas™ are attractive choices for storing high-value biologic drugs.

LAY ABSTRACT: One of the most important functions of parenteral drug containers is safeguarding their contents from damage, either chemical or physical. Glass has been the container material of choice for many years, but concerns over breakage and vulnerability to chemical attack at non-neutral pH have spurred the rise of advanced plastics as alternatives. Plastics solve many problems associated with glass but introduce several of their own, including increased gas permeation and generation of oxidizing radicals during sterilization. In this article, we evaluate SiOPlas™, a hybrid material consisting of plastic with a thin multilayer coating applied to the interior, for its ability to overcome these two problems. We find that SiOPlas™ is much less permeable to oxygen than uncoated plastic, and that two biologic drugs stored in gamma and electron beam sterilized SiOPlas™ vials do not display elevated levels of oxidation compared to either glass or unsterilized vials. This suggests that hybrid materials such as SiOPlas™ can exhibit the best qualities of both glass and plastic, making them attractive materials for storing high-value parenteral drugs.

  • Primary containers
  • Oxidation
  • Permeation
  • Sterilization
  • Teriparatide
  • Erythropoietin
  • © PDA, Inc. 2018
View Full Text

PDA members receive access to all articles published in the current year and previous volume year. Institutional subscribers received access to all content. Log in below to receive access to this article if you are either of these.  

If you are neither or you are a PDA member trying to access an article outside of your membership license, then you must purchase access to this article (below). If you do not have a username or password for JPST, you will be required to create an account prior to purchasing. 

Full issue PDFs are for PDA members only.

Note to pda.org users

The PDA and PDA bookstore websites (www.pda.org and www.pda.org/bookstore) are separate websites from the PDA JPST website. When you first join PDA, your initial UserID and Password are sent to HighWirePress to create your PDA JPST account. Subsequent UserrID and Password changes required at the PDA websites will not pass on to PDA JPST and vice versa. If you forget your PDA JPST UserID and/or Password, you can request help to retrieve UserID and reset Password below.

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

patientACCESS

patientACCESS - Patients desiring access to articles

Full issue PDFs are for PDA members only. You can join PDA at www.pda.org. 

PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 72 (1)
PDA Journal of Pharmaceutical Science and Technology
Vol. 72, Issue 1
January/February 2018
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Inhibiting Sterilization-Induced Oxidation of Large Molecule Therapeutics Packaged in Plastic Parenteral Vials
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
1 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Inhibiting Sterilization-Induced Oxidation of Large Molecule Therapeutics Packaged in Plastic Parenteral Vials
Jeffrey R. Vieregg, Steven J. Martin, Adam P. Breeland, Christopher M. Weikart, Matthew V. Tirrell
PDA Journal of Pharmaceutical Science and Technology Jan 2018, 72 (1) 35-43; DOI: 10.5731/pdajpst.2017.008011

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Inhibiting Sterilization-Induced Oxidation of Large Molecule Therapeutics Packaged in Plastic Parenteral Vials
Jeffrey R. Vieregg, Steven J. Martin, Adam P. Breeland, Christopher M. Weikart, Matthew V. Tirrell
PDA Journal of Pharmaceutical Science and Technology Jan 2018, 72 (1) 35-43; DOI: 10.5731/pdajpst.2017.008011
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion and Conclusions
    • Conflict of Interest Declaration
    • Acknowledgments
    • Reference
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Quantitative and Qualitative Evaluation of Microorganism Profile Identified in Bioburden Analysis in a Biopharmaceutical Facility in Brazil: Criteria for Classification and Management of Results
  • Evaluation of Extreme Depyrogenation Conditions on the Surface Hydrolytic Resistance of Glass Containers for Pharmaceutical Use
  • A Holistic Approach for Filling Volume Variability Evaluation and Control with Statistical Tool
Show more Research

Similar Articles

Keywords

  • Primary containers
  • oxidation
  • permeation
  • Sterilization
  • Teriparatide
  • Erythropoietin

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire