Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleResearch

Inhibiting Sterilization-Induced Oxidation of Large Molecule Therapeutics Packaged in Plastic Parenteral Vials

Jeffrey R. Vieregg, Steven J. Martin, Adam P. Breeland, Christopher M. Weikart and Matthew V. Tirrell
PDA Journal of Pharmaceutical Science and Technology January 2018, 72 (1) 35-43; DOI: https://doi.org/10.5731/pdajpst.2017.008011
Jeffrey R. Vieregg
1Institute for Molecular Engineering, University of Chicago, Chicago, IL;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Steven J. Martin
2SiO Medical Products, Auburn, AL; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Adam P. Breeland
2SiO Medical Products, Auburn, AL; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christopher M. Weikart
2SiO Medical Products, Auburn, AL; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Matthew V. Tirrell
1Institute for Molecular Engineering, University of Chicago, Chicago, IL;
3Institute for Molecular Engineering, Argonne National Laboratory, Argonne, IL
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: mtirrell@uchicago.edu
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

Reference

  1. 1.↵
    1. Manning M. C.,
    2. Chou D. K.,
    3. Murphy B. M.,
    4. Payne R. W.,
    5. Katayama D. S.
    Stability of Protein Pharmaceuticals: An Update. Pharm. Res. 2010, 27 (4), 544–575.
    OpenUrlCrossRefPubMed
  2. 2.↵
    1. Cleland J. L.,
    2. Powell M. F.,
    3. Shire S. J.
    The Development of Stable Protein Formulations—a Close Look at Protein Aggregation, Deamidation, and Oxidation. Crit. Rev. Ther. Drug Carrier Syst. 1993, 10 (4), 307–377.
    OpenUrlPubMedWeb of Science
  3. 3.↵
    1. Torosantucci R.,
    2. Schöneich C.,
    3. Jiskoot W.
    Oxidation of Therapeutic Proteins and Peptides: Structural and Biological Consequences. Pharm. Res. 2014, 31 (3), 541–553.
    OpenUrl
  4. 4.↵
    1. Costantino H. R.,
    2. Langer R.,
    3. Klibanov A. M.
    Moisture-Induced Aggregation of Lyophilized Insulin. Pharm. Res. 1994, 11 (1), 21–29.
    OpenUrlCrossRefPubMed
  5. 5.↵
    1. Vogt W.
    Oxidation of Methionyl Residues in Proteins—Tools, Targets, and Reversal. Free Radical Bio. Med. 1995, 18 (1), 93–105.
    OpenUrl
  6. 6.↵
    1. Li S. H.,
    2. Schoneich C.,
    3. Wilson G. S.,
    4. Borchardt R. T.
    Chemical Pathways of Peptide Degradation. V. Ascorbic-Acid Promotes Rather Than Inhibits the Oxidation of Methionine to Methionine Sulfoxide in Small Model Peptides. Pharm. Res. 1993, 10 (11), 1572–1579.
    OpenUrlPubMed
  7. 7.↵
    1. Fransson J.,
    2. FlorinRobertsson E.,
    3. Axelsson K.,
    4. Nyhlen C.
    Oxidation of Human Insulin-like Growth Factor I in Formulation Studies: Kinetics of Methionine Oxidation in Aqueous Solution and in Solid State. Pharm Res 1996, 13 (8), 1252–1257.
    OpenUrlCrossRefPubMedWeb of Science
  8. 8.↵
    1. Shoyele S. A.,
    2. Sivadas N.,
    3. Cryan S.-A.
    The Effects of Excipients and Particle Engineering on the Biophysical Stability and Aerosol Performance of Parathyroid Hormone (1-34) Prepared as a Dry Powder for Inhalation. AAPS PharmSciTech 2011, 12 (1), 304–311.
    OpenUrlCrossRefPubMed
  9. 9.↵
    1. Sacha G. A.,
    2. Saffell-Clemmer W.,
    3. Abram K.,
    4. Akers M. J.
    Practical Fundamentals of Glass, Rubber, and Plastic Sterile Packaging Systems. Pharm. Dev. Technol. 2010, 15 (1), 6–34.
    OpenUrlPubMed
  10. 10.↵
    1. Schaut R. A.,
    2. Weeks W. P.
    Historical Review of Glasses Used for Parenteral Packaging. PDA J Pharm Sci Technol. 2017, 71 (4), 279–296.
    OpenUrlAbstract/FREE Full Text
  11. 11.↵
    1. Iacocca R. G.,
    2. Toltl N.,
    3. Allgeier M.,
    4. Bustard B.,
    5. Dong X.,
    6. Foubert M.,
    7. Hofer J.,
    8. Peoples S.,
    9. Shelbourn T.
    Factors Affecting the Chemical Durability of Glass Used in the Pharmaceutical Industry. AAPS PharmSciTech 2010, 11 (3), 1340–1349.
    OpenUrlPubMed
  12. 12.↵
    1. Zhao J.,
    2. Lavalley V.,
    3. Mangiagalli P.,
    4. Wright J. M.,
    5. Bankston T. E.
    Glass Delamination: a Comparison of the Inner Surface Performance of Vials and Pre-filled Syringes. AAPS PharmSciTech 2014, 15 (6), 1398–1409.
    OpenUrl
  13. 13.↵
    1. Niles W. D.,
    2. Coassin P. J.
    Cyclic Olefin Polymers: Innovative Materials for High-Density Multiwell Plates. Assay Drug Dev. Technol. 2008, 6 (4), 577–590.
    OpenUrlCrossRefPubMedWeb of Science
  14. 14.↵
    1. Mayers C. L.,
    2. Jenke D. R.
    Stabilization of Oxygen-Sensitive Formulations via a Secondary Oxygen Scavenger. Pharm Res 1993, 10 (3), 445–448.
    OpenUrlPubMed
  15. 15.↵
    1. Nakamura K.,
    2. Abe Y.,
    3. Kiminami H.,
    4. Yamashita A.,
    5. Iwasaki K.,
    6. Suzuki S.,
    7. Yoshino K.,
    8. Dierick W.,
    9. Constable K.
    A Strategy for the Prevention of Protein Oxidation by Drug Product in Polymer-based Syringes. PDA J. Pharm. Sci. Technol. 2015, 69 (1), 88–95.
    OpenUrlAbstract/FREE Full Text
  16. 16.↵
    1. Chatham H.
    Oxygen Diffusion Barrier Properties of Transparent Oxide Coatings on Polymeric Substrates. Surface and Coatings Technology 1996, 78 (1-3), 1–9.
    OpenUrl
  17. 17.↵
    1. Walther M.,
    2. Heming M.,
    3. Spallek M.
    Multilayer Barrier Coating System Produced by Plasma-Impulse Chemical Vapor Deposition (PICVD). Surface and Coatings Technology 1996, 80 (1-2), 200–202.
    OpenUrl
  18. 18.↵
    1. Leterrier Y.
    Durability of Nanosized Oxygen-Barrier Coatings on Polymers. Progress in Materials Science 2003, 48 (1), 1–55.
    OpenUrl
  19. 19.↵
    1. da Silva Sobrinho A. S.,
    2. Latrèche M.,
    3. Czeremuszkin G.,
    4. Klemberg-Sapieha J. E.,
    5. Wertheimer M. R.
    Transparent Barrier Coatings on Polyethylene Terephthalate by Single- and Dual-Frequency Plasma-Enhanced Chemical Vapor Deposition. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 1998, 16 (6), 3190–3198.
    OpenUrl
  20. 20.↵
    1. Danielzik B.,
    2. Mohl W.,
    3. Spallek M.,
    4. Walther M.
    High Rate Coatings for Diffusion Barriers by Plasma Impulse Chemical Vapour Deposition. Proceedings of the Annual Technical Conference—Society of Vacuum Coaters, 1996.
  21. 21.↵
    1. Frelinger A. L.,
    2. Zull J. E.
    Oxidized Forms of Parathyroid-Hormone with Biological-Activity—Separation and Characterization of Hormone Forms Oxidized at Methionine-8 and Methionine-18. J. Biol. Chem. 1984, 259 (9), 5507–5513.
    OpenUrlAbstract/FREE Full Text
  22. 22.↵
    1. Nabuchi Y.,
    2. Fujiwara E.,
    3. Ueno K.,
    4. Kuboniwa H.,
    5. Asoh Y.,
    6. Ushio H.
    Oxidation of Recombinant Human Parathyroid Hormone: Effect of Oxidized Position on the Biological Activity. Pharm. Res. 1995, 12 (12), 2049–2052.
    OpenUrlCrossRefPubMedWeb of Science
  23. 23.↵
    1. Ohta M.,
    2. Kawasaki N.,
    3. Hyuga S.,
    4. Hyuga M.,
    5. Hayakawa T.
    Selective Glycopeptide Mapping of Erythropoietin by On-Line High-Performance Liquid Chromatography–Electrospray Ionization Mass Spectrometry. J. Chromatogr., A 2001, 910 (1), 1–11.
    OpenUrlCrossRefPubMed
  24. 24.↵
    1. Zull J. E.,
    2. Smith S. K.,
    3. Wiltshire R.
    Effect of Methionine Oxidation and Deletion of Amino-Terminal Residues on the Conformation of Parathyroid-Hormone—Circular-Dichroism Studies. J. Biol. Chem. 1990, 265 (10), 5671–5676.
    OpenUrlAbstract/FREE Full Text
  25. 25.↵
    1. Kamberi M.,
    2. Kim Y. J.,
    3. Jun B.,
    4. Riley C. M.
    The Effects of Sucrose on Stability of Human Brain Natriuretic Peptide [hBNP (1-32)] and Human Parathyroid Hormone [hPTH (1-34)]. J. Peptide Res. 2008, 66 (6), 348–356.
    OpenUrl
  26. 26.↵
    1. Lai P. H.,
    2. Everett R.,
    3. Wang F. F.,
    4. Arakawa T.,
    5. Goldwasser E.
    Structural Characterization of Human Erythropoietin. J. Biol. Chem. 1986, 261 (7), 3116–3121.
    OpenUrlAbstract/FREE Full Text
  27. 27.↵
    1. Labrenz S. R.,
    2. Calmann M. A.,
    3. Heavner G. A.,
    4. Tolman G.
    The Oxidation of Methionine-54 of Epoetinum Alfa Does Not Affect Molecular Structure or Stability, but Does Decrease Biological Activity. PDA J. Pharm. Sci. Technol. 2008, 62 (3), 211–223.
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 72 (1)
PDA Journal of Pharmaceutical Science and Technology
Vol. 72, Issue 1
January/February 2018
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Inhibiting Sterilization-Induced Oxidation of Large Molecule Therapeutics Packaged in Plastic Parenteral Vials
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
8 + 10 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Inhibiting Sterilization-Induced Oxidation of Large Molecule Therapeutics Packaged in Plastic Parenteral Vials
Jeffrey R. Vieregg, Steven J. Martin, Adam P. Breeland, Christopher M. Weikart, Matthew V. Tirrell
PDA Journal of Pharmaceutical Science and Technology Jan 2018, 72 (1) 35-43; DOI: 10.5731/pdajpst.2017.008011

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Inhibiting Sterilization-Induced Oxidation of Large Molecule Therapeutics Packaged in Plastic Parenteral Vials
Jeffrey R. Vieregg, Steven J. Martin, Adam P. Breeland, Christopher M. Weikart, Matthew V. Tirrell
PDA Journal of Pharmaceutical Science and Technology Jan 2018, 72 (1) 35-43; DOI: 10.5731/pdajpst.2017.008011
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion and Conclusions
    • Conflict of Interest Declaration
    • Acknowledgments
    • Reference
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Quantitative and Qualitative Evaluation of Microorganism Profile Identified in Bioburden Analysis in a Biopharmaceutical Facility in Brazil: Criteria for Classification and Management of Results
  • Evaluation of Extreme Depyrogenation Conditions on the Surface Hydrolytic Resistance of Glass Containers for Pharmaceutical Use
  • A Holistic Approach for Filling Volume Variability Evaluation and Control with Statistical Tool
Show more Research

Similar Articles

Keywords

  • Primary containers
  • oxidation
  • permeation
  • Sterilization
  • Teriparatide
  • Erythropoietin

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire