Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleTechnology/Application

Enabling Robust and Rapid Raw Material Identification and Release by Handheld Raman Spectroscopy

Thomas E. Matthews, Christine Coffman, Dave Kolwyck, Dan Hill and Jason E. Dickens
PDA Journal of Pharmaceutical Science and Technology July 2019, 73 (4) 356-372; DOI: https://doi.org/10.5731/pdajpst.2018.009563
Thomas E. Matthews
15000 Davis Drive, Morrisville, NC 27709
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: thomas.matthews@biogen.com
Christine Coffman
15000 Davis Drive, Morrisville, NC 27709
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dave Kolwyck
15000 Davis Drive, Morrisville, NC 27709
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dan Hill
15000 Davis Drive, Morrisville, NC 27709
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jason E. Dickens
15000 Davis Drive, Morrisville, NC 27709
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    Testing and Approval of Components, Drug Product Containers, and Closures. Code of Federal Regulations, Part 211, Title 21, 2011.
  2. 2.↵
    1. Ahuja S.,
    2. Dong M.
    1. Lister A. S.
    Validation of HPLC Methods in Pharmaceutical Analysis. In Handbook of HPLC in Pharmaceutical Analyses; Ahuja S., Dong M., Eds. Elsevier: San Diego, CA, 2005; Vol. 6, pp 191–217.
    OpenUrl
  3. 3.↵
    1. Siesler H. W.,
    2. Ozaki Y.,
    3. Kawata S.,
    4. Heise H. M.
    Near-Infrared Spectroscopy: Principles, Instruments, Applications; Siesler H. W., Ozaki Y., Kawata S., Heise H. M., Eds.; Wiley-VCH: Mannheim, Germany, 2002.
  4. 4.↵
    1. Szalay A.,
    2. Antal I.,
    3. Zsigmond Z.,
    4. Marton S.,
    5. Erős I.,
    6. Regdon G. Jr..,
    7. Pintye-Hódi K.
    Study on the Relationship between Particle Size and Near Infrared Diffuse Reflectance Spectroscopic Data. Part. Part. Syst. Charact. 2005, 22 (3), 219–222.
    OpenUrl
  5. 5.↵
    1. Powell J. R.,
    2. Wasacz F. M.,
    3. Jakobsen R. J.
    An Algorithm for the Reproducible Spectral Subtraction of Water from the FT-IR Spectra of Proteins in Dilute Solutions and Adsorbed Monolayers. Appl. Spectrosc. 1986, 40 (3), 339–344.
    OpenUrlCrossRef
  6. 6.↵
    1. Kemper M. S.,
    2. Luchetta L. M.
    A Guide to Raw Material Analysis Using Near Infrared Spectroscopy. J. Near Infrared Spectrosc. 2003, 11 (3), 155–174.
    OpenUrl
  7. 7.↵
    1. Dempster M. A.,
    2. MacDonald B. F.,
    3. Gemperline P. J.,
    4. Boyer N. R.
    A Near-Infrared Reflectance Analysis Method for the Noninvasive Identification of Film-Coated and Non-Film-Coated, Blister-Packed Tablets. Anal. Chim. Acta 1995, 310 (1), 43–51.
    OpenUrlCrossRef
  8. 8.↵
    1. Gemperline P. J.,
    2. Webber L. D.,
    3. Cox F. O.
    Raw Materials Testing Using Soft Independent Modeling of Class Analogy Analysis of Near-Infrared Reflectance Spectra. Anal. Chem. 1989, 61 (2), 138–144.
    OpenUrlCrossRef
  9. 9.↵
    1. Ryan J. A.,
    2. Compton S. V.,
    3. Brooks M. A.,
    4. Compton D. A.
    Rapid Verification of Identity and Content of Drug Formulations Using Mid-Infrared Spectroscopy. J. Pharm. Biomed. Anal. 1991, 9 (4), 303–310.
    OpenUrlCrossRefPubMed
  10. 10.↵
    1. Kirdar A. O.,
    2. Chen G.,
    3. Weidner J.,
    4. Rathore A. S.
    Application of Near‐Infrared (NIR) Spectroscopy for Screening of Raw Materials Used in the Cell Culture Medium for the Production of a Recombinant Therapeutic Protein. Biotechnol. Prog. 2010, 26 (2), 527–531.
    OpenUrlPubMed
  11. 11.↵
    1. Compton D. A. C.,
    2. Compton S. V.
    Examination of Packaged Consumer Goods by Using FT-Raman Spectrometry. Appl. Spectrosc. 1991, 45 (10), 1587–1589.
    OpenUrlCrossRef
  12. 12.↵
    U.S. Pharmacopeial Convention. General Chapter <1120> Raman Spectrophotometry. In USP 29–NF 24, USP: Rockville, MD, 2005.
  13. 13.↵
    1. Mccreery R. L.,
    2. Horn A. J.,
    3. Spencer J.,
    4. Jefferson E.
    Noninvasive Identification of Materials Inside USP Vials with Raman Spectroscopy and a Raman Spectral Library. J. Pharm. Sciences 1998, 87 (1), 1–8.
    OpenUrl
  14. 14.↵
    1. Vankeirsbilck T.,
    2. Vercauteren A.,
    3. Baeyens W.,
    4. Van der Weken G.,
    5. Verpoort F.,
    6. Vergote G.,
    7. Remon J. P.
    Applications of Raman Spectroscopy in Pharmaceutical Analysis. TrAC, Trends Anal. Chem. 2002, 21 (12), 869–877.
    OpenUrl
  15. 15.↵
    European Medicines Agency, Guideline on the Use of Near Infrared Spectroscopy by the Pharmaceutical Industry and the Data Requirements for New Submissions and Variations. EMA: London, 2014.
  16. 16.↵
    1. Bouveresse E.,
    2. Hartmann C.,
    3. Massart D. L.,
    4. Last I. R.,
    5. Prebble K. A.
    Standardization of Near-Infrared Spectrometric Instruments. Anal. Chem. 1996, 68 (6), 982–990.
    OpenUrlCrossRef
  17. 17.↵
    U.S. Pharmacopeial Convention. General Chapter <1119> Near-Infrared Spectrophotometry. In USP–NF, USP: Rockville, MD.
  18. 18.↵
    1. Green R. L.,
    2. Brown C. D.
    Raw-Material Authentication Using a Handheld Raman Spectrometer. Pharm. Technol. 2008, 32 (3), 148–162.
    OpenUrl
  19. 19.↵
    1. Bloomfield M.,
    2. Andrews D.,
    3. Loeffen P.,
    4. Tombling C.,
    5. York T.,
    6. Matousek P.
    Non-Invasive Identification of Incoming Raw Pharmaceutical Materials Using Spatially Offset Raman Spectroscopy. J. Pharm. Biomed. Anal. 2013, 76, 65–69.
    OpenUrlCrossRefPubMed
  20. 20.↵
    1. Skoulika S. G.,
    2. Georgiou C. A.
    Rapid, Noninvasive Quantitative Determination of Acyclovir in Pharmaceutical Solid Dosage Forms through Their Poly(Vinyl Chloride) Blister Package by Solid-State Fourier Transform Raman Spectroscopy. Appl. Spectrosc. 2003, 57 (4), 407–412.
    OpenUrlCrossRefPubMed
  21. 21.↵
    1. de Veij M.,
    2. Vandenabeele P.,
    3. Hall K. A.,
    4. Fernandez F. M.,
    5. Green M. D.,
    6. White N. J.,
    7. Dondorp A. M.,
    8. Newton P. N.,
    9. Moens L.
    Fast Detection and Identification of Counterfeit Antimalarial Tablets by Raman Spectroscopy. J. Raman Spectrosc. 2007, 38 (2), 181–187.
    OpenUrlCrossRef
  22. 22.↵
    1. Gryniewicz-Ruzicka C. M.,
    2. Rodriguez J. D.,
    3. Arzhantsev S.,
    4. Buhse L. F.,
    5. Kauffman J. F.
    Libraries, Classifiers, and Quantifiers: A Comparison of Chemometric Methods for the Analysis of Raman Spectra of Contaminated Pharmaceutical Materials. J. Pharm. Biomed. Anal. 2012, 61, 191–198.
    OpenUrlCrossRefPubMed
  23. 23.↵
    1. Green R. L.,
    2. Hargreaves M. D.,
    3. Gardner C. M.
    Performance Characterization of a Combined Material Identification and Screening Algorithm. In Proceedings Volume 8726, Next-Generation Spectroscopic Technologies VI, 87260F, SPIE Defense, Security, and Sensing, Baltimore, MD, May 29, 2013.
  24. 24.↵
    1. Kirsch A.,
    2. Scheufens S.,
    3. Saal C.
    Identity Testing of Raw Materials for Pharmaceutical Production by Raman Spectroscopy. Am. Pharm. Rev. 2008, 11 (1), 72, 74–78.
    OpenUrl
  25. 25.↵
    1. Bugay D. E.,
    2. Brush R. C.
    Chemical Identity Testing by Remote-Based Dispersive Raman Spectroscopy. Appl. Spectrosc. 2010, 64 (5), 467–475.
    OpenUrlCrossRefPubMed
  26. 26.↵
    1. Cebeci Maltas D.,
    2. Kwok K.,
    3. Wang P.,
    4. Taylor L. S.,
    5. Ben-Amotz D.
    Rapid Classification of Pharmaceutical Ingredients with Raman Spectroscopy Using Compressive Detection Strategy with PLS-DA Multivariate Filters. J. Pharm. Biomed. Anal. 2013, 80, 63–68.
    OpenUrl
  27. 27.↵
    1. Matousek P.,
    2. Thorley F.,
    3. Chen P.,
    4. Hargreaves M.,
    5. Tombling C.,
    6. Loeffen P.,
    7. Bloomfield M.,
    8. Andrews D.
    Emerging Raman Techniques for Rapid Noninvasive Characterization of Pharmaceutical Samples and Containers. Spectroscopy 2011, 26 (3), 44–51.
    OpenUrl
  28. 28.↵
    1. Jehlicka J.,
    2. Culka A.,
    3. Bersani D.,
    4. Vandenabeele P.
    Comparison of Seven Portable Raman Spectrometers: Beryl as a Case Study. J. Raman Spectrosc. 2017, 48 (10), 1289–1299.
    OpenUrl
  29. 29.↵
    1. Marshall S.,
    2. Cooper J. B.
    Quantitative Raman Spectroscopy When the Signal-to-Noise Is below the Limit of Quantitation Due to Fluorescence Interference: Advantages of a Moving Window Sequentially Shifted Excitation Approach. Appl. Spectrosc. 2016, 70 (9), 1489–1501.
    OpenUrlCrossRefPubMed
  30. 30.↵
    1. Culka A.,
    2. Jehlicka J.
    Sequentially Shifted Excitation: A Tool for Suppression of Laser-Induced Fluorescence in Mineralogical Applications Using Portable Raman Spectrometers. J. Raman Spectrosc. 2018, 49 (3), 526–537.
    OpenUrl
  31. 31.↵
    Electronic Records; Electronic Signatures. Code of Federal Regulations. Part 11, Title 21, 2018, https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=11 (accessed August 22, 2018).
  32. 32.↵
    1. Fujioka Y.
    Influence of Temperature on Raman Lines. Nature 1929, 124 (3114), 11.
    OpenUrl
  33. 33.↵
    1. Lucazeau G.
    Effect of Pressure and Temperature on Raman Spectra of Solids: Anharmonicity. J. Raman Spectrosc. 2003, 34 (7-8), 478–496.
    OpenUrl
  34. 34.↵
    1. Larkin P. J.,
    2. Dabros M.,
    3. Sarsfield B.,
    4. Chan E.,
    5. Carriere J. T.,
    6. Smith B. C.
    Polymorph Characterization of Active Pharmaceutical Ingredients (APIs) Using Low-Frequency Raman Spectroscopy. Appl. Spectrosc. 2014, 68 (7), 758–776.
    OpenUrlCrossRefPubMed
  35. 35.↵
    1. Dračínský M.,
    2. Procházková E.,
    3. Kessler J.,
    4. Šebestík J.,
    5. Matějka P.,
    6. Bouř P.
    Resolution of Organic Polymorphic Crystals by Raman Spectroscopy. J. Phys. Chem. B 2013, 117 (24), 7297–7307.
    OpenUrl
  36. 36.↵
    1. Elbagerma M. A.,
    2. Edwards H. G. M.,
    3. Munshi T.,
    4. Hargreaves M. D.,
    5. Matousek P.,
    6. Scowen I. J.
    Characterization of New Cocrystals by Raman Spectroscopy, Powder X-Ray Diffraction, Differential Scanning Calorimetry, and Transmission Raman Spectroscopy. Cryst. Growth Des. 2010, 10 (5), 2360–2371.
    OpenUrl
  37. 37.↵
    1. Cao X.,
    2. Wen Z-Q.,
    3. Wang T.,
    4. Meriage D.,
    5. Craig L. A.,
    6. Parks K.,
    7. Undey C.
    Development Considerations of Adapting Raman Spectroscopy for Raw Material Fingerprinting. Am. Pharm. Rev. [Online] 2015, https://www.americanpharmaceuticalreview.com/Featured-Articles/181888-Development-Considerations-of-Adapting-Raman-Spectroscopy-for-Raw-Material-Fingerprinting/ (accessed November 30, 2015).
  38. 38.↵
    1. Romero-Torres S.,
    2. Wikström H.,
    3. Grant E. R.,
    4. Taylor L. S.
    Monitoring of Mannitol Phase Behavior during Freeze-Drying Using Non-Invasive Raman Spectroscopy. PDA J. Pharm. Sci. Technol. 2007, 61 (2), 131–145.
    OpenUrlAbstract/FREE Full Text
  39. 39.↵
    International Conference on Harmonisation, ICH Harmonised Tripartite Guideline Q2(R1): Validation of Analytical Procedures: Text and Methodology. ICH [Online], https://www.ich.org/products/guidelines/quality/quality-single/article/analytical-procedure-development-and-revision-of-q2r1-analytical-validation-copy-1.html (accessed August 23, 2016).
  40. 40.↵
    International Conference on Harmonisation, ICH Harmonised Tripartite Guideline Q8(R2): Pharmaceutical Development. ICH [Online] 2009, https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q8_R1/Step4/Q8_R2_Guideline.pdf (accessed March 26, 2018).
  41. 41.↵
    1. Rathore A. S.,
    2. Mhatre R.
    1. Lanan M.
    QbD for Raw Materials. In Quality by Design for Biopharmaceuticals: Principles and Case Studies [Online]; Rathore A. S., Mhatre R., Eds. John Wiley & Sons: Hoboken, NJ, 2008; Chapter 11, pp 193–209.
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 73 (4)
PDA Journal of Pharmaceutical Science and Technology
Vol. 73, Issue 4
July/August 2019
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Enabling Robust and Rapid Raw Material Identification and Release by Handheld Raman Spectroscopy
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
1 + 12 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Enabling Robust and Rapid Raw Material Identification and Release by Handheld Raman Spectroscopy
Thomas E. Matthews, Christine Coffman, Dave Kolwyck, Dan Hill, Jason E. Dickens
PDA Journal of Pharmaceutical Science and Technology Jul 2019, 73 (4) 356-372; DOI: 10.5731/pdajpst.2018.009563

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Enabling Robust and Rapid Raw Material Identification and Release by Handheld Raman Spectroscopy
Thomas E. Matthews, Christine Coffman, Dave Kolwyck, Dan Hill, Jason E. Dickens
PDA Journal of Pharmaceutical Science and Technology Jul 2019, 73 (4) 356-372; DOI: 10.5731/pdajpst.2018.009563
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results and Discussion
    • Conclusion
    • Conflict of Interest Declaration
    • Acknowledgements
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Mechanical Container Closure Integrity Test: A Method for Cartridge Systems
  • Practical application of setting up an annual Contamination Control Strategy (CCS) assessment
  • A Container Closure Integrity Test Method for Vials Stored at Cryogenic Conditions Using Headspace Oxygen Analysis
Show more Technology/Application

Similar Articles

Keywords

  • Raman spectroscopy
  • Raw materials
  • Rapid ID
  • Handheld Raman
  • Chemometrics
  • PAT

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire