Skip to main content
  • Main menu
  • User menu
  • Search

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleResearch

Freezing Time Prediction of Biologic Formulated Drug Substance Using the Plank Model

Mostafa Nakach, Firas Bahloul, StÉphanie Greco, Jean-RenÉ Authelin, Otmar Klingler and Cathrin Bernhardt
PDA Journal of Pharmaceutical Science and Technology January 2021, 75 (1) 24-32; DOI: https://doi.org/10.5731/pdajpst.2019.011247
Mostafa Nakach
1Sanofi R&D, 1, Impasse des Ateliers, 94403 Vitry sur Seine, France;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: mostafa.nakach@sanofi.com
Firas Bahloul
227 Avenue d'Alsace Lorraine 93130 Noisy le Sec, France; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
StÉphanie Greco
1Sanofi R&D, 1, Impasse des Ateliers, 94403 Vitry sur Seine, France;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jean-RenÉ Authelin
1Sanofi R&D, 1, Impasse des Ateliers, 94403 Vitry sur Seine, France;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Otmar Klingler
3Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, D-65926 Frankfurt am Main, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Cathrin Bernhardt
3Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, D-65926 Frankfurt am Main, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Singh S. K.,
    2. Kolhe P.,
    3. Wang W.,
    4. Nema S.
    Large-Scale Freezing of Biologics. BioProcess Int. 2009, 7, 34–42.
    OpenUrlGoogle Scholar
  2. 2.↵
    1. Singh S. K.,
    2. Rathore N.,
    3. McAuley A.,
    4. Rathore A. S.
    Best Practices for Formulation and Manufacturing of Biotech Drug Products. BioPharm Int. 2009, 22 (6), 32–48.
    OpenUrlGoogle Scholar
  3. 3.↵
    1. Swarbrick J.
    1. Boylan J. C.
    Encyclopedia of Pharmaceutical Technology; Swarbrick J.; Boylan J. C., Eds.; Marcel Dekker: New York, 2001.
    Google Scholar
  4. 4.↵
    1. Cavatur R. K.,
    2. Vemuri N. M.,
    3. Pyne A.,
    4. Chrzan Z.,
    5. Toledo-Velasquez D.,
    6. Suryanarayanan R.
    Crystallization Behavior of Mannitol in Frozen Aqueous Solutions. Pharm. Res. 2002, 19 (6), 894–900.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  5. 5.↵
    1. Pyne A.,
    2. Surana R.,
    3. Suryanarayanan R.
    Crystallization of Mannitol below Tg′ during Freeze-Drying in Binary and Ternary Aqueous Systems. Pharm. Res. 2002, 19 (6), 901–908.
    OpenUrlPubMedGoogle Scholar
  6. 6.↵
    1. Akers M. J.,
    2. Milton N.,
    3. Byrn S. R.,
    4. Nail S. L.
    Glycine Crystallization during Freezing: The Effects of Salt Form, pH, and Ionic Strength. Pharm. Res. 1995, 12 (10), 1457–1461.
    OpenUrlPubMedGoogle Scholar
  7. 7.↵
    1. Piedmonte D. M.,
    2. Summers C.,
    3. McAuley A.,
    4. Karamujic L.,
    5. Ratnaswamy G.
    Sorbitol Crystallization Can Lead to Protein Aggregation in Frozen Protein Formulations. Pharm. Res. 2006, 24 (1), 136–146.
    OpenUrlGoogle Scholar
  8. 8.↵
    1. Piedmonte D. M.,
    2. Hair A.,
    3. Baker P.,
    4. Brych L.,
    5. Nagapudi K.,
    6. Lin H.,
    7. Cao W.,
    8. Hershenson S.,
    9. Ratnaswamy G.
    Sorbitol Crystallization-Induced Aggregation in Frozen mAb Formulations. J. Pharm. Sci. 2015, 104 (2), 686–697.
    OpenUrlGoogle Scholar
  9. 9.↵
    1. Wang B.,
    2. Tchessalov S.,
    3. Warne N. W.,
    4. Pikal M. J.
    Impact of Sucrose Level on Storage Stability of Proteins in Freeze-Dried Solids: I. Correlation of Protein–Sugar Interaction with Native Structure Preservation. J. Pharm. Sci. 2009, 98 (9), 3131–3144.
    OpenUrlPubMedGoogle Scholar
  10. 10.↵
    1. Connolly B. D.,
    2. Le L.,
    3. Patapoff T. W.,
    4. Cromwell M. E. M.,
    5. Moore J. M. R.,
    6. Lam P.
    Protein Aggregation in Frozen Trehalose Formulations: effects of Composition, Cooling Rate, and Storage Temperature. J. Pharm. Sci. 2015, 104 (12), 4170–4184.
    OpenUrlGoogle Scholar
  11. 11.↵
    1. Wang B.,
    2. Tchessalov S.,
    3. Cicerone M. T.,
    4. Warne N. W.,
    5. Pikal M. J.
    Impact of Sucrose Level on Storage Stability of Proteins in Freeze-Dried Solids: II. Correlation of Aggregation Rate with Protein Structure and Molecular Mobility. J. Pharm. Sci. 2009, 98 (9), 3145–3166.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  12. 12.↵
    1. Sundaramurthi P.,
    2. Shalaev E.,
    3. Suryanarayanan R.
    “pH Swing” in Frozen Solutions—Consequence of Sequential Crystallization of Buffer Components. J. Phys. Chem. Lett. 2010, 1 (1), 265–268.
    OpenUrlGoogle Scholar
  13. 13.↵
    1. Jiang S.,
    2. Nail S. L.
    Effect of Process Conditions on Recovery of Protein Activity after Freezing and Freeze-Drying. Eur. J. Pharm. Biopharm. 1998, 45 (3), 249–257.
    OpenUrlCrossRefPubMedGoogle Scholar
  14. 14.↵
    1. Rodrigues M. A.,
    2. Miller M. A.,
    3. Glass M. A.,
    4. Singh S. K.,
    5. Johnston K. P.
    Effect of Freezing Rate and Dendritic Ice Formation on Concentration Profiles of Proteins Frozen in Cylindrical Vessels. J. Pharm. Sci. 2011, 100 (4), 1316–1329.
    OpenUrlGoogle Scholar
  15. 15.↵
    1. Miller M. A.,
    2. Rodrigues M. A.,
    3. Glass M. A.,
    4. Singh S. K.,
    5. Johnston K. P.,
    6. Maynard J. A.
    Frozen-State Storage Stability of a Monoclonal Antibody: Aggregation Is Impacted by Freezing Rate and Solute Distribution. J. Pharm. Sci. 2013, 102 (4), 1194–1208.
    OpenUrlGoogle Scholar
  16. 16.↵
    1. Roessl U.,
    2. Leitgeb S.,
    3. Nidetzky B.
    Protein Freeze Concentration and Micro-Segregation Analysed in a Temperature-Controlled Freeze Container. Biotechnol. Rep. 2015, 6 108–111.
    OpenUrlGoogle Scholar
  17. 17.↵
    1. Singh S.,
    2. Kolhe P.,
    3. Wang W.,
    4. Nema S.
    Large-Scale Freezing of Biologics—a Practitioner’s Review, Part One: Fundamental Aspects. BioProcess Int. 2009, 7 (10), 32–44.
    OpenUrlGoogle Scholar
  18. 18.↵
    1. Plank R.
    Die Gefrierdauer Von Eisblöcken. Z. Gesamte Kalte-Ind. 1913, 20 (6), 109–114.
    OpenUrlGoogle Scholar
  19. 19.↵
    1. Plank R.
    Beitrage Zur Berechnung and Bewertung Der Gefriergeschwindigkeit Von Lebensmitteln. Z. Gesamte Kalte-Ind. 1941, 3 (10), 22.
    OpenUrlGoogle Scholar
  20. 20.↵
    1. López-Leiva M.,
    2. Hallström B.
    The Original Plank Equation and Its Use in the Development of Food Freezing Rate Predictions. J. Food Eng. 2003, 58 (3), 267–275.
    OpenUrlGoogle Scholar
  21. 21.↵
    1. Pham Q. T.
    Simplified Equation for Predicting the Freezing Time of Foodstuffs. Int. J. Food Sci. Technol. 1986, 21 (2), 209–219.
    OpenUrlGoogle Scholar
  22. 22.↵
    1. Pham Q. T.,
    2. Willix J.
    Effect of Biot Number and Freezing Rate on Accuracy of Some Food Freezing Time Prediction Methods. J. Food Sci. 1990, 55 (5), 1429–1434.
    OpenUrlGoogle Scholar
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 75 (1)
PDA Journal of Pharmaceutical Science and Technology
Vol. 75, Issue 1
January/February 2021
  • Table of Contents
  • Index by Author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Email Article
Citation Tools
Share
Freezing Time Prediction of Biologic Formulated Drug Substance Using the Plank Model
Mostafa Nakach, Firas Bahloul, StÉphanie Greco, Jean-RenÉ Authelin, Otmar Klingler, Cathrin Bernhardt
PDA Journal of Pharmaceutical Science and Technology Jan 2021, 75 (1) 24-32; DOI: 10.5731/pdajpst.2019.011247
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Conclusion
    • Conflict of Interest Declaration
    • Acknowledgments
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • A Holistic Approach for Filling Volume Variability Evaluation and Control with Statistical Tool
  • A Proof-of-Concept Study on a Universal Standard Kit to Evaluate the Risks of Inspectors for Their Foundational Ability of Visual Inspection of Injectable Drug Products
  • Quantitative and Qualitative Evaluation of Microorganism Profile Identified in Bioburden Analysis in a Biopharmaceutical Facility in Brazil: Criteria for Classification and Management of Results
Show more Research

Similar Articles

Keywords

  • Freezing
  • Kinetics
  • Cryo-concentration
  • Crystallization
  • Heat transfer coefficient
  • Plank modeling

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire
Alerts for this Article
Sign In to Email Alerts with your Email Address
Email this Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Freezing Time Prediction of Biologic Formulated Drug Substance Using the Plank Model
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
2 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Freezing Time Prediction of Biologic Formulated Drug Substance Using the Plank Model
Mostafa Nakach, Firas Bahloul, StÉphanie Greco, Jean-RenÉ Authelin, Otmar Klingler, Cathrin Bernhardt
PDA Journal of Pharmaceutical Science and Technology Jan 2021, 75 (1) 24-32; DOI: 10.5731/pdajpst.2019.011247

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

We use cookies on this site to enhance your user experience

By clicking any link on this page you are giving your consent for us to set cookies.