Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleTechnology/Application

Applying Machine Learning to the Visual Inspection of Filled Injectable Drug Products

Romain Veillon, John Shabushnig, Lars Aabye-Hansen, Matthieu Duvinage, Christian Eckstein, Zheng Li, Andrea Sardella, Manuel Soto, Jorge Delgado Torres and Brian Turnquist
PDA Journal of Pharmaceutical Science and Technology September 2023, 77 (5) 376-401; DOI: https://doi.org/10.5731/pdajpst.2022.012796
Romain Veillon
1GSK, Wavres, Belgium;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John Shabushnig
2Insight Pharma Consulting, LLC, Marshall, MI;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: JohnShabushnig@aol.com
Lars Aabye-Hansen
3Novo Nordisk, Copenhagen, Denmark;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Matthieu Duvinage
1GSK, Wavres, Belgium;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christian Eckstein
4MVTec GmbH, München, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Zheng Li
5Genentech, South San Francisco, CA;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andrea Sardella
6Stevanato Group, S.p.a., Vicenza, Italy;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Manuel Soto
7Amgen, Juncos, Puerto Rico; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jorge Delgado Torres
7Amgen, Juncos, Puerto Rico; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Brian Turnquist
8BoonLogic, Inc., St Paul, MN
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    U.S. Pharmacopeial Convention, General Chapter <790> Visual Particulates in Injections. In USP 42—NF 37, USP: Rockville, MD, 2019.
  2. 2.↵
    Council of Europe, Particulate Contamination: Visible Particles, Chapter 2.9.20. European Pharmacopoeia (Ph. Eur), 10th Edition, Council of Europe: Strasbourg, France, 2019.
  3. 3.↵
    Ministry of Health Labour and Welfare of Japan, General Tests, Processes and Apparatus— 6.06 Foreign Insoluble Matter Test for Injections. In The Japanese Pharmacopoeia, 17th Edition (English Version), MHLW: Tokyo, 2006.
  4. 4.↵
    U.S. Pharmacopeial Convention, General Chapter <1790> Visual Inspection of Injections. In USP 42—NF 37, USP: Rockville, MD, 2019.
  5. 5.↵
    1. Patel S. M.,
    2. Nail S. L.,
    3. Pikal M. J.,
    4. Geidobler R.,
    5. Winter G.,
    6. Hawe A.,
    7. Davagnino J.,
    8. Gupta S. R.
    Lyophilized Drug Product Cake Appearance: What Is Acceptable? J. Pharm. Sci. 2017, 106 (7), 1706–1721.
    OpenUrl
  6. 6.↵
    1. Bukofzer S.,
    2. Ayres J.,
    3. Chavez A.,
    4. Devera M.,
    5. Miller J.,
    6. Ross D.,
    7. Shabushnig J.,
    8. Vargo S.,
    9. Watson H.,
    10. Watson R.
    Industry Perspectives on the Medical Risk of Visible Particles in Injectable Drug Products. PDA J. Pharm. Sci. Technol. 2015, 69 (1), 123–139.
    OpenUrlFREE Full Text
  7. 7.↵
    1. Aldrich D. S.,
    2. Cherris R. T.,
    3. Shabushnig J. G.
    Visual Inspection and Particulate Control; DHI Publishing, LLC: River Grove, IL, 2016.
  8. 8.↵
    American Society for Quality. ASQ Z1.4-2003 (R2013): Sampling Procedures and Tables for Inspection by Attributes, ASQ, 2013.
  9. 9.↵
    International Organization for Standardization, ISO 2859-1:1999 Sampling Procedures for Inspection by Attributes, ISO: Geneva, 1999.
  10. 10.↵
    1. Shabushnig J.
    PDA Survey: 2014 Visual Inspection; Parenteral Drug Association Inc: Bethesda, MD, 2015.
  11. 11.↵
    1. Bubic A.,
    2. Yves von Cramon D.,
    3. Schubotz R. I.
    Prediction, Cognition and the Brain. Front. Hum. Neurosci. 2010, 4, 25.
    OpenUrlCrossRefPubMed
  12. 12.↵
    1. Nilsson N. J.
    The Quest for Artificial Intelligence: A History of Ideas and Achievements; Cambridge University Press, 2010.
  13. 13.↵
    1. McCarthy J.
    What Is Artificial Intelligence? http://www-formal.stanford.edu/jmc/ (accessed July 28, 2023).
  14. 14.↵
    1. Knapp J. Z.,
    2. Kushner H. K.
    Generalized Methodology for Evaluation of Parenteral Inspection Procedures. J. Parenter. Drug Assoc. 1980, 34 (1), 14–61.
    OpenUrlPubMed
  15. 15.↵
    1. Knapp J. Z.,
    2. Kushner H. K.
    Implementation and Automation of a Particle Detection System for Parenteral Products. J. Parenter. Drug Assoc. 1980, 34 (5), 369–393.
    OpenUrlPubMed
  16. 16.↵
    1. Delly J. G.
    Diffraction Lines: The Eyes Have It. Microscope 1989, 37 (2), 195–211.
    OpenUrl
  17. 17.↵
    1. Elgendy M.
    Deep Learning for Vision Systems; Manning, 2020.
  18. 18.↵
    1. Gasimov H.
    Image Classification with Tensorflow for Beginners. Gasimof.com. www.gasimof.com/blog/image-classification-with-tensorflow-for-beginners/ (accessed July 28, 2023).
  19. 19.↵
    1. Simonyan K.,
    2. Zisserman A.
    Very Deep Convolutional Networks for Large-Scale Image Recognition. 2014, arXiv:1409.1556v6. arXiv.org archive. https://arxiv.org/abs/1409.1556v6 (accessed July 28, 2023).
  20. 20.↵
    1. Long J.,
    2. Shelhamer E.,
    3. Darrell T.
    Fully Convolutional Networks for Semantic Segmentation. 2015, arXiv:1411.4038v2. arXiv.org archive. https://arxiv.org/abs/1411.4038 (accessed July 28, 2023).
  21. 21.↵
    1. Ronneberger O.,
    2. Fischer P.,
    3. Brox T.
    U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015, arXiv:1505.04597v1. arXiv.org archive. https://arxiv.org/abs/1505.04597.
  22. 22.↵
    1. Geron A.
    Hands on Machine Learning with Scikit-Learn and Tensorflow; O-Reilly, 2017.
  23. 23.↵
    1. Pang G.,
    2. Shen C.,
    3. Longbing C.,
    4. van den Hengel A.
    Deep Learning for Anomaly Detection: A Review. 2020, arXiv:2007.02500v3. arXiv.org archive. https://arxiv.org/abs/2007.02500 (accessed July 28, 2023).
  24. 24.↵
    1. Pereira F.,
    2. Burges C. J.,
    3. Bottou L.,
    4. Wienberger K. Q.
    1. Krizhevsky A.,
    2. Sutskever I.,
    3. Hinton G.
    ImageNet Classification with Deep Convolutional Neural Networks. In Advances in Neural Information Processing Systems 25 (NIPS 2012); Pereira F., Burges C. J., Bottou L., Wienberger K. Q., Eds.; Morgan Kaufmann Publishers, Incuiyt., 2012; pp 1097–1105.
  25. 25.↵
    1. Zhao Z.-Q.,
    2. Zeng P.,
    3. Xu S.,
    4. Wu X.
    Object Detection with Deep Learning: A Review. 2019, arXiv:1807.05511v2. arXiv.org archive. https://arxiv.org/abs/1807.05511 (accessed July 28, 2023).
  26. 26.↵
    1. Navab N.,
    2. Hornegger J.,
    3. Wells W.,
    4. Frangi A.
    1. Ronneberger O.,
    2. Fischer P.,
    3. Brox T.
    U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015; Navab N., Hornegger J., Wells W., Frangi A., Eds.; Lecture Notes in Computer Science, Vol. 9351; Springer, 2015; pp 234–241.
  27. 27.↵
    1. Litjens G.,
    2. Kooi T.,
    3. Bejnordi B. E.,
    4. Setio A. A. A.,
    5. Ciompi F.,
    6. Ghafoorian M.,
    7. van der Laak J. A. W. M.,
    8. van Ginneken B.,
    9. Sanchez C. I.
    A Survey on Deep Learning in Medical Image Analysis. 2020, arXiv:1702.05747v2. arXiv.org archive. https://arxiv.org/abs/1702.05747 (accessed July 28, 2023).
  28. 28.↵
    1. Palmer G.,
    2. Schneiders B.,
    3. Savani R.,
    4. Tuyls K.,
    5. Fossel J.-D.,
    6. Flore H.
    The Automated Inspection of Opaque Liquid Vaccines. 2020, arXiv:2002.09406v1. arXiv.org archive. https://arxiv.org/abs/2002.09406v1 (accessed July 28, 2023).
  29. 29.↵
    Adversarial Latent Autoencoders. Weights & Biases Web site. 2020, https://wandb.ai/site/articles/adversarial-latent-autoencoders#:∼:text=In%20the%20words%20of%20Yann%20LeCun%2C%20Generative%20Adversarial,layouts%20and%20blueprints%20all%20the%20way%20to%20memes (accessed July 28, 2023).
  30. 30.↵
    1. Ng A.
    Machine Learning Yearning; Andrew Ng, 2018. https://www.deeplearning.ai/ (accessed July 28, 2023).
  31. 31.↵
    1. Fichefet P.
    Learning for Anomaly Detection in Industrial Vision. Thesis, Université catholique de Louvain (UCL), 2018.
  32. 32.↵
    Picking the Right Training Data Platform. Superb AI White Paper, 2020. www.superb-ai.com (accessed July 28, 2023).
  33. 33.↵
    1. Chui M.,
    2. Manyika J.,
    3. Miremadi M.,
    4. Henken N,
    5. Chung R.,
    6. Nel P.,
    7. Malhotra S.
    Notes from the AI Frontier, 2018. McKinsey & Company Web site. https://www.mckinsey.com/featured-insights/artificial-intelligence/notes-from-the-ai-frontier-applications-and-value-of-deep-learning (accessed July 28, 2023).
  34. 34.↵
    1. Parson J.
    Validation of AVI. PDA Visual Inspection Forum, Virtual, October 19–20, 2020.
  35. 35.↵
    International Society for Pharmaceutical Engineering, GAMP 5 Guide: Compliant GxP Computerized Systems. ISPE: Tampa, FL, 2008.
  36. 36.↵
    Parenteral Drug Association Inc. Technical Report No. 60: Process Validation: A Lifecycle Approach; Bethesda, MD, 2013.
  37. 37.↵
    European Commission, EudraLex—The Rules Governing Medicinal Products in the European Union, Volume 4: Good Manufacturing Practice for Medicinal Products for Human and Veterinary Use, Annex 1: Manufacture of Sterile Medicinal Products (corrected version). European Commission: Brussels, 2008.
  38. 38.↵
    1. Zhou B.,
    2. Khosta A.,
    3. Lapedriza A.,
    4. Oliva A.,
    5. Torralba A.
    Learning Deep Features for Discriminative Localization. 2015, arXiv:1512.04150v1. arXiv.org archive. https://arxiv.org/abs/1512.04150 (accessed July 28, 2023).
  39. 39.↵
    1. Pedregosa F.,
    2. Varoquaux G.,
    3. Gramfort A.,
    4. Michel V.,
    5. Thirion B.,
    6. Grisel O.,
    7. Blondel M.,
    8. Prettenhofer P.,
    9. Weiss R.,
    10. Dubourg V.,
    11. Vanderplas J.,
    12. Passos A.,
    13. Cournapeau D.,
    14. Brucher M.,
    15. Perrot M.,
    16. Duchesnay E.
    Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12 (85), 2825–2830.
    OpenUrlCrossRefPubMed
  40. 40.↵
    1. Turnquist B.
    Automated Visual Inspection Based on Unsupervised Machine Learning, BoonLogic Poster, PDA Visual Inspection Forum, Virtual, October 19–20, 2020.
  41. 41.↵
    1. Huang C.,
    2. Cao J.,
    3. Ye F.,
    4. Li M.,
    5. Zhang Y.,
    6. Lu C.
    Inverse Transform AutoEncoder for Anomaly Detection. 2019, arXiv:1911.10676v1. arXiv.org archive. https://arxiv.org/abs/1911.10676v1 (accessed July 28, 2023).
  42. 42.↵
    1. Hutter F.,
    2. Kotthoff L.,
    3. Vanschoren J.
    Automated Machine Learning, Springer, 2019.
  43. 43.↵
    United Nations Educational, Scientific and Cultural Organization. Recommendation on the Ethics of Artificial Intelligence. 2022, UNESCO Web site. https://en.unesco.org/artificial-intelligence/ethics (accessed July 28, 2023).
  44. 44.↵
    1. Burkart N.,
    2. Huber M. F.
    A Survey on the Explainability of Supervised Machine Learning. J. Artif. Intell. Res. 2021, 70, 245–317. https://dl.acm.org/doi/pdf/10.1613/jair.1.12228 (accessed July 28, 2023).
    OpenUrl
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 77 (5)
PDA Journal of Pharmaceutical Science and Technology
Vol. 77, Issue 5
September/October 2023
  • Table of Contents
  • Index by Author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Applying Machine Learning to the Visual Inspection of Filled Injectable Drug Products
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
6 + 5 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Applying Machine Learning to the Visual Inspection of Filled Injectable Drug Products
Romain Veillon, John Shabushnig, Lars Aabye-Hansen, Matthieu Duvinage, Christian Eckstein, Zheng Li, Andrea Sardella, Manuel Soto, Jorge Delgado Torres, Brian Turnquist
PDA Journal of Pharmaceutical Science and Technology Sep 2023, 77 (5) 376-401; DOI: 10.5731/pdajpst.2022.012796

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Applying Machine Learning to the Visual Inspection of Filled Injectable Drug Products
Romain Veillon, John Shabushnig, Lars Aabye-Hansen, Matthieu Duvinage, Christian Eckstein, Zheng Li, Andrea Sardella, Manuel Soto, Jorge Delgado Torres, Brian Turnquist
PDA Journal of Pharmaceutical Science and Technology Sep 2023, 77 (5) 376-401; DOI: 10.5731/pdajpst.2022.012796
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Building a Traditional AVI System
    • Building an AI-Based AVI System
    • Validating an AI-Based AVI System
    • Maintaining an AI-Based AVI System
    • The Future of AI-Based AVI Systems
    • Conclusion
    • Conflict of Interest Declaration
    • Acknowledgements
    • Appendix 1: Glossary
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Mechanical Container Closure Integrity Test: A Method for Cartridge Systems
  • Practical application of setting up an annual Contamination Control Strategy (CCS) assessment
  • A Container Closure Integrity Test Method for Vials Stored at Cryogenic Conditions Using Headspace Oxygen Analysis
Show more Technology/Application

Similar Articles

Keywords

  • visual inspection
  • Automated inspection
  • Injectable drug
  • machine learning
  • Deep learning
  • Supervised learning
  • Unsupervised learning
  • Image labeling
  • Neural network
  • Inspection qualification

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire