Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Article CommentaryCommentary

Enhancement of Cell-Based Vaccine Manufacturing through Process Intensification

William Whitford, Alain M. SourabiÈ and Dushyant B. Varshney
PDA Journal of Pharmaceutical Science and Technology March 2022, 76 (2) 151-162; DOI: https://doi.org/10.5731/pdajpst.2020.012583
William Whitford
1DPS Group, 959 Concord St #100, Framingham, MA 01701; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: William.whitford@dpsgroupglobal.com
Alain M. SourabiÈ
2Procelys by Lesaffre, 103 Rue Jean Jaurès, 94700 Maisons-Alfort, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dushyant B. Varshney
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

There are many drivers to intensify the manufacturing of vaccines. The emergence of SARS-CoV-2 has only added to them. Since the pandemic began, we have been seeing an acceleration of vaccine development and approval, including application of novel prophylactic vaccine modalities. We have also seen an increase in the appreciation and general understanding of what had been a somewhat obscure discipline. Concurrently, there has been great interest in the application of new understandings and technology to the intensification of biopharmaceutical processes in general. The marriage of these developments defines the field of vaccine manufacturing process intensification. Difficulties in its implementation include the many disparate vaccine types—from conjugate to hybrid to nucleic acid based. Then, there are the respective and developing manufacturing methods, modes, and platforms—from fermentation of transformed bacteria to the bioreactor culture of recombinant animal cells to production of virus-like particles in transgenic plants. Advances are occurring throughout the biomanufacturing arena, from process development (PD) techniques to manufacturing platforms, materials, equipment, and facilities. Bioprocess intensification refers to systems for producing more product per cell, time, volume, footprint, or cost. The need for vaccine manufacturing process intensification is being driven by desires for cost control, process efficiency, and the heightened pressures of pandemic response. We are seeing great interest in the power of such disciplines as synthetic biology, process simplification, continuous bioprocessing, and digital techniques in the optimization of vaccine PD and manufacturing. Other powerful disciplines here include process automation, improved monitoring, optimized culture materials, and facility design. The intent of this short commentary is to provide a brief review and a few examples of the exciting advances in the equipment, technology, and processes supporting this activity.

  • Intensification
  • process
  • digital
  • optimization
  • production
  • vaccine
  • manufacturing
  • efficiency
  • © PDA, Inc. 2022
View Full Text

PDA members receive access to all articles published in the current year and previous volume year. Institutional subscribers received access to all content. Log in below to receive access to this article if you are either of these.  

If you are neither or you are a PDA member trying to access an article outside of your membership license, then you must purchase access to this article (below). If you do not have a username or password for JPST, you will be required to create an account prior to purchasing. 

Full issue PDFs are for PDA members only.

Note to pda.org users

The PDA and PDA bookstore websites (www.pda.org and www.pda.org/bookstore) are separate websites from the PDA JPST website. When you first join PDA, your initial UserID and Password are sent to HighWirePress to create your PDA JPST account. Subsequent UserrID and Password changes required at the PDA websites will not pass on to PDA JPST and vice versa. If you forget your PDA JPST UserID and/or Password, you can request help to retrieve UserID and reset Password below.

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

patientACCESS

patientACCESS - Patients desiring access to articles

Full issue PDFs are for PDA members only. You can join PDA at www.pda.org. 

PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 76 (2)
PDA Journal of Pharmaceutical Science and Technology
Vol. 76, Issue 2
March/April 2022
  • Table of Contents
  • Index by Author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Enhancement of Cell-Based Vaccine Manufacturing through Process Intensification
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
4 + 3 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Enhancement of Cell-Based Vaccine Manufacturing through Process Intensification
William Whitford, Alain M. SourabiÈ, Dushyant B. Varshney
PDA Journal of Pharmaceutical Science and Technology Mar 2022, 76 (2) 151-162; DOI: 10.5731/pdajpst.2020.012583

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Enhancement of Cell-Based Vaccine Manufacturing through Process Intensification
William Whitford, Alain M. SourabiÈ, Dushyant B. Varshney
PDA Journal of Pharmaceutical Science and Technology Mar 2022, 76 (2) 151-162; DOI: 10.5731/pdajpst.2020.012583
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • 1. Introduction
    • 2. Cell-Based Vaccine Production
    • 3. Animal Cells
    • 4. Bacteria
    • 5. Need for Vaccine Process Intensification
    • 6. Intensification Techniques
    • 7. Conclusion
    • Conflict of Interest Declaration
    • Footnotes
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Challenges and Solutions to Manufacturing of Low-Viscosity, Ultra-High Concentration IgG1 Drug Products: From Late Downstream Process to Final Fill Finish Processing
  • Retrospective Evaluation of Cycled Resin in Viral Clearance Studies - A Multiple Company Collaboration - Post ICH Q5A(R2) Review
  • Addressing Medical Device Extractables and Leachables via Non-Target Analysis (NTA); The Analytical Evaluation Threshold (AET) and Quantitation
Show more Commentary

Similar Articles

Keywords

  • Intensification
  • process
  • digital
  • optimization
  • production
  • Vaccine
  • Manufacturing
  • efficiency

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire