Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleResearch

Mechanistic Investigation on Grinding-Induced Subvisible Particle Formation during Mixing and Filling of Monoclonal Antibody Formulations

Benson Gikanga, Ada Hui and Yuh-Fun Maa
PDA Journal of Pharmaceutical Science and Technology March 2018, 72 (2) 117-133; DOI: https://doi.org/10.5731/pdajpst.2017.007732
Benson Gikanga
1Pharmaceutical Processing and Technology Development, Genentech, South San Francisco, CA; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ada Hui
2Late Stage Pharmaceutical Development, Genentech, South San Francisco, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yuh-Fun Maa
1Pharmaceutical Processing and Technology Development, Genentech, South San Francisco, CA; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: maay@gene.com
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Gikanga B.,
    2. Chen Y.,
    3. Stauch O. B.,
    4. Maa Y.-F.
    Mixing Monoclonal Antibody Formulations Using Bottom-Mounted Mixers—Impact of Mechanism and Design on Drug Product Quality. PDA J. Pharm. Sci. Technol. 2015, 69 (2), 284–296.
    OpenUrlAbstract/FREE Full Text
  2. 2.↵
    1. Gikanga B.,
    2. Roshan-Eisner D.,
    3. Ovadia R.,
    4. Day E.,
    5. Stauch O. B.,
    6. Maa Y.-F.
    Processing Impact on Monoclonal Antibody Drug Products: Protein Subvisible Particulate Formation Induced by Grinding Stress. PDA J. Pharm. Sci. Technol. 2017, 71 (3), 172–188.
    OpenUrlAbstract/FREE Full Text
  3. 3.↵
    1. Eibl R.,
    2. Eibl D.
    1. Werner S.,
    2. Kraume M.,
    3. Eibl D.
    Bag Mixing Systems for Single-Use. In Single-Use Technology in Biopharmaceutical Manufacture; Eibl R., Eibl D., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, 2011; pp 21–32.
  4. 4.↵
    1. Eibl R.,
    2. Eibl D.
    1. Eibl D.,
    2. Peuker T.,
    3. Eibl R.
    Single-Use Equipment in Biopharmaceutical Manufacture: A Brief Introduction. In Single-Use Technology in Biopharmaceutical Manufacture; Eibl R., Eibl D., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, 2011; pp 3–11.
  5. 5.↵
    1. Sinclair A.,
    2. Monge M.
    Evaluating Disposable Mixing Systems. BioPharm Int. 2009, 22 (2). Available at http://www.biopharminternational.com/evaluating-disposable-mixing-systems
  6. 6.↵
    1. Cromwell M. E.,
    2. Hilario E.,
    3. Jacobson F.
    Protein Aggregation and Bioprocessing. AAPS J. 2006, 8 (3), E572–E579.
    OpenUrlCrossRefPubMedWeb of Science
  7. 7.↵
    1. Nayak A.,
    2. Colandene J.,
    3. Bradford V.,
    4. Perkins M.
    ; Characterization of Subvisible Particle Formation during Filling Pump Operation of a Monoclonal Antibody Solution. J. Pharm. Sci. 2011, 100 (10), 4198–4204.
    OpenUrlPubMed
  8. 8.↵
    1. Tyagi A. K.,
    2. Randolph T. W.,
    3. Dong A.,
    4. Maloney K. E.,
    5. Hitscherich C. Jr..,
    6. Carpenter J. F.
    IgG Particle Formation during Pump Operation: A Case Study of Heterogeneous Nucleation on Stainless Steel Nanoparticles. J. Pharm. Sci. 2009, 98 (1), 94–102.
    OpenUrlPubMed
  9. 9.↵
    1. Kiese S.,
    2. Pappenberger A.,
    3. Friess W.,
    4. Mahler H.-C.
    Shaken, Not Stirred: Mechanical Stress Testing of an IgG1 Antibody. J. Pharm. Sci. 2007, 97 (10), 4347–4366.
    OpenUrl
  10. 10.↵
    1. Joubert M. K.,
    2. Luo Q.,
    3. Nashed-Samuel Y.,
    4. Wypych J.,
    5. Narhi L.
    Classification and Characterization of Therapeutic Antibody Aggregates. J. Biol. Chem. 2011, 286 (28), 25118–25133.
    OpenUrlAbstract/FREE Full Text
  11. 11.↵
    1. Randolph T. W.,
    2. Schiltz E.,
    3. Sederstrom D.,
    4. Steinmann D.,
    5. Mozziconacci O.,
    6. Schoneich C.,
    7. Freund E.,
    8. Ricci M. S.,
    9. Carpenter J. F.,
    10. Lengsdeld C. S.
    Do Not Drop: Mechanical Shock in Vials Causes Cavitation, Protein Aggregation, and Particle Formation. J. Pharm. Sci. 2015, 104 (2), 602–611.
    OpenUrl
  12. 12.↵
    1. Thomas C. R.,
    2. Geer D.
    Effects of Shear on Proteins in Solutions. Biochem. Lett. 2011, 33 (3), 443–453.
    OpenUrl
  13. 13.↵
    1. Virkar P. D.,
    2. Narendranathan T. J.,
    3. Hoare M.,
    4. Dunhill P.
    Studies of the Effect of Shear on Golubular Proteins: Extension to High Shear Fields and to Pumps. Biotechnol. Bioeng. 1981, 23 (2), 425–429.
    OpenUrl
  14. 14.↵
    1. Maa Y.-F.,
    2. Hsu C. C.
    Effect of High Shear on Proteins. Biotechnol. Bioeng. 1996, 51 (4), 458–465.
    OpenUrlPubMedWeb of Science
  15. 15.↵
    1. Colombie S.,
    2. Gaunand A.,
    3. Linder B.
    Lysozyme Inactivation under Mechanical Stirring; Effect of Physical and Molecular Interfaces. Enzyme Microb. Technol. 2001, 28 (9), 820–826.
    OpenUrlPubMed
  16. 16.↵
    1. Postel C.,
    2. Abillon O.,
    3. Desbat B.
    Structure and Denaturation of Absorbed Lysozyme at the Air–Water Interface. J. Colloid. Interface Sci. 2003, 266 (1), 74–81.
    OpenUrlCrossRefPubMed
  17. 17.↵
    1. Maa Y.-F.,
    2. Hsu C. C.
    Protein Denaturation by Combined Effect of Shear and Air–Liquid Interface. Biotechnol. Bioeng. 1997, 54 (6), 503–512.
    OpenUrlPubMed
  18. 18.↵
    1. Biddlecombe J. G.,
    2. Craig A. V.,
    3. Zhang H.,
    4. Uddin S.,
    5. Mulot S.,
    6. Fish B. C.,
    7. Bracewell D. G.
    Determining Antibody Stability: Creation of Solid–Liquid Interfacial Effects within a High Shear Environment. Biotechnol. Prog. 2007, 23 (5), 1218–1222.
    OpenUrlPubMed
  19. 19.↵
    1. Biddlecombe J. G.,
    2. Smith G.,
    3. Uddin S.,
    4. Mulot S.,
    5. Spencer D.,
    6. Gee C.,
    7. Fish B. C.,
    8. Bracewell D. G.
    Factors Influencing Antibody Stability at Solid–Liquid Interfacial Effects within a High Shear Environment. Biotechnol. Prog. 2009, 25 (5), 1499–1507.
    OpenUrlCrossRefPubMed
  20. 20.↵
    1. Bee J. S.,
    2. Stevenson J. L.,
    3. Mehta B.,
    4. Svitel J.,
    5. Pollastrini J.,
    6. Platz R.,
    7. Freund E.,
    8. Carpenter J. F.,
    9. Randolph T. W.
    Response of a Concentrated Monoclonal Antibody Formulation to High Shear. Biotechnol. Bioeng. 2009, 103 (5), 936–943.
    OpenUrlPubMed
  21. 21.↵
    1. Suslick K. S.,
    2. Flannigan D. J.
    Inside a Collapsing Bubble: Sonoluminescence and the Condition during Cavitation. Annu. Rev. Phys. Chem. 2008, 59, 659–683.
    OpenUrlCrossRefPubMedWeb of Science
  22. 22.↵
    1. Flannigan D. J.,
    2. Suslick K. S.
    Plasma Formation and Temperature Measurement during Single-Bubble Cavitation. Nature 2005, 434 (7029), 52–55.
    OpenUrlCrossRefPubMedWeb of Science
  23. 23.↵
    1. Ashokkumar M.,
    2. Griesser F.
    Ultrasound Assisted Chemical Processes. Rev. Chem. Eng. 1999, 15 (1), 41–83.
    OpenUrl
  24. 24.↵
    1. Cains P.,
    2. Martin P.
    The Use of Ultrasound in Industrial Chemical Synthesis and Crystallization. 1. Application to Synthetic Chemistry. Org. Process Res. Dev. 1998, 2 (1), 34–48.
    OpenUrl
  25. 25.↵
    1. Gülseren I.,
    2. Güzey D.,
    3. Bruce B. D.,
    4. Weiss J.
    Structural and Functional Changes in Ultrasonicated Bovine Serum Albumin Solutions. Ultrason. Sonochem. 2007, 14 (2), 173–183.
    OpenUrlCrossRefPubMed
  26. 26.↵
    1. Bhushan B.
    1. Kennedy F.
    Frictional Heating and Contact Temperatures. In Modern Tribology Handbook, Volume One: Principles of Tribology, Bhushan B., Ed.; CRC Press LLC: Boca Raton, FL, 2001, pp 235–272.
  27. 27.↵
    1. Bee J. S.,
    2. Chiu D.,
    3. Sawicki S.,
    4. Stevenson J. L.,
    5. Chatterjee K.,
    6. Freund E.,
    7. Carptenter J. F.,
    8. Randolph T. W.
    Monoclonal Antibody Interactions with Micro- and Nanoparticles: Adsorption, Aggregation, and Accelerated Stress Studies. J. Pharm. Sci. 2009, 98 (9), 3218–3238.
    OpenUrlPubMed
  28. 28.↵
    1. Dhankhar P.
    Homogenization Fundamentals. IOSR J. Eng. 2014, 4 (5), 1–8.
    OpenUrl
  29. 29.↵
    1. Broadhead J.,
    2. Edmond Rouan S. K.,
    3. Hau I.,
    4. Rhodes C. T.
    The Effect of Process and Formulation Variables on the Properties of Spray-Dried β-galactosidase. J. Pharm. Pharmacol. 1994, 46 (6), 458–467.
    OpenUrlPubMed
  30. 30.↵
    1. Maa Y. F.,
    2. Costantino H. R.,
    3. Nguyen P. A.,
    4. Hsu C. C.
    The Effects of Operating and Formulation Variables on the Morphology of Spray Dried Protein Particles. Pharm. Dev. Technol. 1997, 2 (3), 213–223.
    OpenUrlCrossRefPubMed
  31. 31.↵
    1. Maa Y.-F.,
    2. Nguyen P.-A.,
    3. Hsu S. W.
    Spray Drying of Air-Sensitive Recombinant Human Growth Hormone. J. Pharm. Sci. 1998, 87 (1) 152–159.
    OpenUrlCrossRefPubMed
  32. 32.↵
    1. Dobry D. E.,
    2. Settel D. M.,
    3. Maumann J. M.,
    4. Ray R. J.,
    5. Graham L. J.,
    6. Beyerinck R. A.
    A Model-Based Methodology for Spray-Drying Process Development. J. Pharm. Innov. 2009, 4 (3), 133–142.
    OpenUrlPubMed
  33. 33.↵
    1. Bowen M.,
    2. Turok B.,
    3. Maa Y.-F.
    Spray Drying of Monoclonal Antibodies: Investigating Powder-Based Biologic Drug Substance Bulk Storage. Drying Technol. 2013, 31 (13-14), 1441–1450.
    OpenUrl
  34. 34.↵
    1. Gikanga B.,
    2. Turok R.,
    3. Hui A.,
    4. Bowen M.,
    5. Stauch O. B.,
    6. Maa Y.-F.
    Manufacturing of High-Concentration Monoclonal Antibody Formulations via Spray Drying—the Road to Manufacturing Scale. PDA J. Pharm. Sci. Technol. 2015, 69 (1), 59–73.
    OpenUrlAbstract/FREE Full Text
  35. 35.↵
    1. Bernard J. G.,
    2. Singh S.,
    3. Randolph T. W.,
    4. Carpenter J. F.
    Subvisible Particle Counting Provides a Sensitive Method of Detecting and Quantifying Aggregation of Monoclonal Antibody Caused by Freeze-thawing: Insights into the Roles of Particles in the Protein Degradation Pathway. J. Pharm. Sci. 2011, 100 (2), 492–503.
    OpenUrlCrossRefPubMed
  36. 36.↵
    1. Simler B. R.,
    2. Hui G.,
    3. Dahl J. E.,
    4. Perez-Ramirez B.
    Mechanistic Complexity of Subvisible Particle Formation: Links to Protein Aggregation Are Highly Specific. J. Pharm. Sci. 2012, 101 (11), 4140–4154.
    OpenUrlPubMed
  37. 37.↵
    1. Kalonia C.,
    2. Kumru O. S.,
    3. Prajapati I.,
    4. Mathaes R.,
    5. Engert J.,
    6. Zhou S.,
    7. Middaugh C. R.,
    8. Volkin D. B.
    Calculating the Mass of Subvisible Protein Particles with Improved Accuracy Using Microflow Imaging Data. J. Pharm. Sci. 2015, 104 (2), 536–547.
    OpenUrl
  38. 38.↵
    1. Kotronarou A,
    2. Mills G,
    3. Hoffmann M.
    Ultrasonic Irradiation of p-nitrophenol in Aqueous Solution. J. Phys. Chem. 1991, 95 (9), 3630–3638.
    OpenUrl
  39. 39.↵
    1. Zhu C.-P.,
    2. Huang B.,
    3. Han Q.-B.,
    4. Ni C.-H.,
    5. Zhu G.-J.,
    6. Liu M.-H.,
    7. Shan M.-L.
    Frequency Effect on p-nitrophenol Degradation under Conditions of Strict Acoustic and Electric Control. Water Sci. Eng. 2011, 4 (1), 74–82.
    OpenUrl
  40. 40.↵
    1. Rajanandam K. S.,
    2. Madhu G. M.,
    3. Thomas A.
    Sonochemical Degradation of Methylene Blue and p-nitrophenol in Aqueous Medium. Int. J. Chem. Reactor Eng. 2011, 9 (1), A68.
    OpenUrl
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 72 (2)
PDA Journal of Pharmaceutical Science and Technology
Vol. 72, Issue 2
March/April 2018
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Mechanistic Investigation on Grinding-Induced Subvisible Particle Formation during Mixing and Filling of Monoclonal Antibody Formulations
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
7 + 7 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Mechanistic Investigation on Grinding-Induced Subvisible Particle Formation during Mixing and Filling of Monoclonal Antibody Formulations
Benson Gikanga, Ada Hui, Yuh-Fun Maa
PDA Journal of Pharmaceutical Science and Technology Mar 2018, 72 (2) 117-133; DOI: 10.5731/pdajpst.2017.007732

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Mechanistic Investigation on Grinding-Induced Subvisible Particle Formation during Mixing and Filling of Monoclonal Antibody Formulations
Benson Gikanga, Ada Hui, Yuh-Fun Maa
PDA Journal of Pharmaceutical Science and Technology Mar 2018, 72 (2) 117-133; DOI: 10.5731/pdajpst.2017.007732
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • 1. Introduction
    • 2. Materials and Methods
    • 3. Results and Discussion
    • 4. Conclusions
    • Conflict of Interest Declaration
    • Acknowledgments
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Quantification and Stability Impact Assessment of Drop Stresses in Biologic Drug Products
  • Google Scholar

More in this TOC Section

  • Quantitative and Qualitative Evaluation of Microorganism Profile Identified in Bioburden Analysis in a Biopharmaceutical Facility in Brazil: Criteria for Classification and Management of Results
  • Evaluation of Extreme Depyrogenation Conditions on the Surface Hydrolytic Resistance of Glass Containers for Pharmaceutical Use
  • A Holistic Approach for Filling Volume Variability Evaluation and Control with Statistical Tool
Show more Research

Similar Articles

Keywords

  • Grinding stress
  • monoclonal antibody
  • Subvisible particles
  • HMWs
  • LMWs
  • Cavitation
  • Sonication
  • Thermal stress
  • Spray drying

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire