Skip to main content
  • Main menu
  • User menu
  • Search

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleResearch

Optimizing the Filtration of Liposomes Using Sterilizing-Grade Filters

Kalliopi Zourna, Aude Iwaniec, Stephen Turner, Nigel B. Jackson and John H. Welsh
PDA Journal of Pharmaceutical Science and Technology March 2021, 75 (2) 128-140; DOI: https://doi.org/10.5731/pdajpst.2020.011866
Kalliopi Zourna
Pall Europe, 5, Harbourgate Business Park, Southampton Road, Portsmouth PO6 4BQ, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: kalliopi_zourna@pall.com
Aude Iwaniec
Pall Europe, 5, Harbourgate Business Park, Southampton Road, Portsmouth PO6 4BQ, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stephen Turner
Pall Europe, 5, Harbourgate Business Park, Southampton Road, Portsmouth PO6 4BQ, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nigel B. Jackson
Pall Europe, 5, Harbourgate Business Park, Southampton Road, Portsmouth PO6 4BQ, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John H. Welsh
Pall Europe, 5, Harbourgate Business Park, Southampton Road, Portsmouth PO6 4BQ, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Chang H.-I.,
    2. Yeh M.-K.
    Clinical Development of Liposome-Based Drugs: Formulation, Characterization, and Therapeutic Efficacy. Int J Nanomed. 2012, 7, 49–60.
    OpenUrlWeb of ScienceGoogle Scholar
  2. 2.↵
    1. Allen T. M.,
    2. Cullis P.
    Liposomal Drug Delivery Systems: From Concept to Clinical Applications. Adv. Drug Delivery Rev 2013, 65 (1), 36–48.
    OpenUrlCrossRefPubMedGoogle Scholar
  3. 3.↵
    1. Carugo D.,
    2. Bottaro E.,
    3. Owen J.,
    4. Stride E.,
    5. Nastruzzi C.
    Liposome Production by Microfluidics: Potential and Limiting Factors. Sci. Rep. 2016, 6 (1), 25876.
    OpenUrlCrossRefGoogle Scholar
  4. 4.↵
    1. Alavi M.,
    2. Karimi N.,
    3. Safaei M.
    Application of Various Types of Liposomes in Drug Delivery Systems. Adv. Pharm. Bull. 2017, 7 (1), 3–9.
    OpenUrlGoogle Scholar
  5. 5.↵
    1. Pattni B. S.,
    2. Chupin V. V.,
    3. Torchilin V. P.
    New Developments in Liposomal Drug Delivery. Chem. Rev. 2015, 115 (19), 10938−10966.
    OpenUrlCrossRefPubMedGoogle Scholar
  6. 6.↵
    1. Bulbake U.,
    2. Doppalapudi S.,
    3. Kommineni N.,
    4. Khan W.
    Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics 2017, 9 (2), 12.
    OpenUrlCrossRefGoogle Scholar
  7. 7.↵
    1. Wagner A.,
    2. Vorauer-Uhl K.
    Liposome Technology for Industrial Purposes. J. Drug Delivery 2011, 2011, 591325.
    Google Scholar
  8. 8.↵
    1. Torchilin V. P.
    Recent Advances with Liposomes as Pharmaceutical Carriers. Nat. Rev. Drug Discovery 2005, 4 (2), 145–160.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  9. 9.↵
    1. Sercombe L.,
    2. Veerati T.,
    3. Moheimani F.,
    4. Wu S. Y.,
    5. Sood A. K.,
    6. Hua S.
    Advances and Challenges of Liposome Assisted Drug Delivery. Front. Pharmacol. 2015, 6, 286.
    OpenUrlCrossRefPubMedGoogle Scholar
  10. 10.↵
    1. Toh M.-R.,
    2. Chiu G. N. C.
    Liposomes as Sterile Preparations and Limitations of Sterilisation Techniques in Liposomal Manufacturing. Asian J. Pharm. Sci. 2013, 8 (2), 88–95.
    OpenUrlGoogle Scholar
  11. 11.↵
    1. Huang Z.,
    2. Li X.,
    3. Zhang T.,
    4. Song Y.,
    5. She Z.,
    6. Li J.,
    7. Deng Y.
    Progress Involving New Techniques for Liposome Preparation. Asian J. Pharm. Sci. 2014, 9 (4), 176–182.
    OpenUrlGoogle Scholar
  12. 12.↵
    1. Jahn A.,
    2. Vreeland W. N.,
    3. DeVoe D. L.,
    4. Locascio L. E.,
    5. Gaitan M.
    Microfluidic Directed Formation of Liposomes of Controlled Size. Langmuir 2007, 23 (11), 6289–6293.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  13. 13.↵
    1. Patil Y. P.,
    2. Jadhav S.
    Novel Methods for Liposome Preparation. Chem. Phys. Lipids 2014, 177, 8–18.
    OpenUrlCrossRefWeb of ScienceGoogle Scholar
  14. 14.↵
    1. Franzen U.,
    2. Østergaard J.
    Physico-Chemical Characterization of Liposomes and Drug Substance–Liposome Interactions in Pharmaceutics Using Capillary Electrophoresis and Electrokinetic Chromatography. J. Chromatogr. A 2012, 1267 (7), 32–44.
    OpenUrlPubMedGoogle Scholar
  15. 15.↵
    1. Smith M. C.,
    2. Crist R. M.,
    3. Clogston J. D.,
    4. McNeil S. E.
    Zeta Potential: A Case Study of Cationic, Anionic, and Neutral Liposomes. Anal. Bioanal. Chem. 2017, 409 (24), 5779–5787.
    OpenUrlGoogle Scholar
  16. 16.↵
    1. Nimesh S.,
    2. Chandra R.
    1. Kumar A.,
    2. Dixit C. K.
    Methods for Characterization of Nanoparticles. In Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids, Nimesh S., Chandra R., Eds.; Woodhead Publishing, 2017, pp 43–58.
    Google Scholar
  17. 17.↵
    1. Laouini A.,
    2. Jaafar-Maalej C.,
    3. Limayem-Blouza I.,
    4. Sfar S.,
    5. Charcosset C.,
    6. Fessi H.
    Preparation, Characterization and Applications of Liposomes: State of the Art. J. Colloid Sci. Biotechnol. 2012, 1 (2), 147–168.
    OpenUrlCrossRefGoogle Scholar
  18. 18.↵
    1. Willmott G. R.
    Tunable Resistive Pulse Sensing: Better Size and Charge Measurements for Submicrometer Colloids. Anal. Chem. 2018, 90 (5), 2987–2995.
    OpenUrlGoogle Scholar
  19. 19.↵
    1. Duan Y.,
    2. Liu Y.,
    3. Li J.,
    4. Wang H.,
    5. Wen S.
    Investigation on the Nanomechanics of Liposome Adsorption on Titanium Alloys: Temperature and Loading Effects. Polymers 2018, 10 (4), 383.
    OpenUrlGoogle Scholar
  20. 20.↵
    1. Et-Thakafy O.,
    2. Delorme N.,
    3. Gaillard C.,
    4. Mériadec C.,
    5. Artzner F.,
    6. Lopez C.,
    7. Guyomarc’h F.
    Mechanical Properties of Membranes Composed of Gel-Phase or Fluid-Phase Phospholipids Probed on Liposomes by Atomic Force Spectroscopy. Langmuir 2017, 33 (21), 5117–5126.
    OpenUrlGoogle Scholar
  21. 21.↵
    1. Ramachandran S.,
    2. Quist A. P.,
    3. Kumar S.,
    4. Lal R.
    Cisplatin Nanoliposomes for Cancer Therapy: AFM and Fluorescence Imaging of Cisplatin Encapsulation, Stability, Cellular Uptake, and Toxicity. Langmuir 2006, 22 (19), 8156–8162.
    OpenUrlCrossRefPubMedGoogle Scholar
  22. 22.↵
    1. Vorselen D.,
    2. MacKintosh F. C.,
    3. Roos W. H.,
    4. Wuite G. J. L.
    Competition between Bending and Internal Pressure Governs the Mechanics of Fluid Nanovesicles. ACS Nano 2017, 11 (3), 2628–2636.
    OpenUrlGoogle Scholar
  23. 23.↵
    1. Folmsbee M.,
    2. Moussourakis M.
    Sterilizing Filtration of Liposome and Related Lipid-Containing Solutions: Enhancing Successful Filter Qualification. PDA J. Pharm. Sci. Technol. 2012, 66 (2), 161–167.
    OpenUrlAbstract/FREE Full TextGoogle Scholar
  24. 24.↵
    1. Folmsbee M.
    Evaluation of the Effect of the Volume Throughput and Maximum Flux of Low Surface-Tension Fluids on Bacterial Penetration of 0.2 Micron Rated Filters during Process-Specific Filter Validation Testing. PDA J. Pharm. Sci. Technol. 2015, 69 (2), 307–316.
    OpenUrlAbstract/FREE Full TextGoogle Scholar
  25. 25.↵
    Parenteral Drug Association Inc. PDA Technical Report No 26 (Revised 2008): Sterilizing Filtration of Liquids. PDA J. Pharm. Sci. Technol. 2008, 62 (S-5), 1–60.
    OpenUrlAbstract/FREE Full TextGoogle Scholar
  26. 26.↵
    U.S. Food and Drug Administration, Guidance for Industry: Sterile Drug Products Produced by Aseptic Processing—Current Good Manufacturing Practice. Center for Biologics Evaluation and Research, U.S. Department of Health and Human Services: Rockville, MD, 2004.
    Google Scholar
  27. 27.↵
    1. Singh B.,
    2. Mundlamuri R.,
    3. Friese T.,
    4. Mundrigi A.,
    5. Handt S.,
    6. Loewe T.
    Benchmarking of Sterilizing-Grade Filter Membranes with Liposome Filtration. PDA J. Pharm. Sci. Technol. 2018, 72 (3), 223–235.
    OpenUrlAbstract/FREE Full TextGoogle Scholar
  28. 28.↵
    Microfluidics. How Our Microfluidizer Processors Work. Microfluidics Web site. https://www.microfluidics-mpt.com/microfluidics-technology/how-it-works (accessed March 31, 2020).
    Google Scholar
  29. 29.↵
    1. Persson K. H.,
    2. Blute I. A.,
    3. Mira I. C.,
    4. Gustafsson J.
    Creation of Well-Defined Particle Stabilized Oil-in-Water Nanoemulsions. Colloids Surf., A 2014, 459, 48–57.
    OpenUrlGoogle Scholar
  30. 30.↵
    1. Nguyen T. L.,
    2. Nguyen T. H.,
    3. Nguyen D. H.
    Development and In Vitro Evaluation of Liposomes Using Soy Lecithin to Encapsulate Paclitaxel. Int. J. Biomater. 2017, 2017, 8234712.
    OpenUrlGoogle Scholar
  31. 31.↵
    1. Yuridian R.,
    2. Rosliana I.,
    3. Purwaningsih E. H.,
    4. Chaidir C.,
    5. Freisleben H.-J.,
    6. Pawitan J.
    Liposome Formulation of Soybean Phosphatidylcholine Extract from Argomulyo Variety Soy to Replace the Toxicity of Injectable Phosphatidylcholine Solution Containing Sodium Deoxycholate. Int. J. PharmTech Res. 2016, 9 (2), 166–175.
    OpenUrlGoogle Scholar
  32. 32.↵
    1. Kulkarni S. B.,
    2. Betageri G. V.,
    3. Singh M.
    Factors Affecting Microencapsulation of Drugs in Liposomes. J. Microencapsulation 1995, 12 (3), 229–246.
    OpenUrlPubMedGoogle Scholar
  33. 33.↵
    1. Elorza B.,
    2. Elorza M. A.,
    3. Sainz M. C.,
    4. Chantres J. R.
    Comparison of Particle Size and Encapsulation Parameters of Three Liposomal Preparations. J. Microencapsulation 1993, 10 (2), 237–248.
    OpenUrlPubMedGoogle Scholar
  34. 34.↵
    1. Cagdas F. M.,
    2. Ertugral N.,
    3. Bucak S.,
    4. Atay N. Z.
    Effect of Preparation Method and Cholesterol on Drug Encapsulation Studies by Phospholipid Liposomes. Pharm. Dev. Technol. 2011, 16 (4), 408–414.
    OpenUrlPubMedGoogle Scholar
  35. 35.↵
    1. Hermia J.
    Constant Pressure Blocking Filtration Laws—Application to Power-Law Non-Newtonian Fluids. Trans. Inst. Chem. Eng. 1982, 60 (3),183–187.
    OpenUrlGoogle Scholar
  36. 36.↵
    1. Zydney A. L.,
    2. Ho C.-C.
    Scale-up of Microfiltration Systems: Fouling Phenomena and Vmax Analysis. Desalination 2002, 146 (1–3), 75–81.
    OpenUrlGoogle Scholar
  37. 37.↵
    1. Badmington F.,
    2. Wilkins R.,
    3. Payne M.,
    4. Honig E. S.
    Vmax Testing for a Microfiltration Train Scale-Up in Biopharmaceutical Processing. Pharm. Technol. 1995, 19 (9), 64.
    OpenUrlGoogle Scholar
  38. 38.↵
    1. Lujan H.,
    2. Griffin W. C.,
    3. Taube J. H.,
    4. Sayes C. M.
    Synthesis and Characterization of Nanometer-Sized Liposomes for Encapsulation and microRNA Transfer to Breast Cancer Cells. Int. J. Nanomed. 2019, 14, 5159–5173.
    OpenUrlGoogle Scholar
  39. 39.↵
    1. Moghimi S. M.,
    2. Hunter A. C.,
    3. Murray J. C.
    Long-Circulating and Target Specific Nanoparticles: Theory to Practice. Pharmacol. Rev. 2001, 53 (2), 283–318.
    OpenUrlAbstract/FREE Full TextGoogle Scholar
  40. 40.↵
    1. Danaei M.,
    2. Dehghankhold M.,
    3. Ataei S.,
    4. Hasanzadeh Davarani F.,
    5. Javanmard R.,
    6. Dokhani A.,
    7. Khorasani S.,
    8. Mozafari M. R.
    Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10 (2), 57.
    OpenUrlGoogle Scholar
  41. 41.↵
    1. Iritani E.,
    2. Katagiri N.,
    3. Inagaki G.
    Compression and Expansion Properties of Filter Cake Accompanied with Step Change in Applied Pressure in Membrane Filtration. Sep. Purif. Technol. 2018, 198, 3–9.
    OpenUrlGoogle Scholar
  42. 42.↵
    1. Foley G.
    A Review of Factors Affecting Filter Cake Properties in Dead-End Microfiltration of Microbial Suspensions. J. Membr. Sci. 2006, 274 (1–2), 38–46.
    OpenUrlGoogle Scholar
  43. 43.↵
    1. Morilla M. J.,
    2. Romero E. L.
    Ultradeformable Phospholipid Vesicles as a Drug Delivery System: A Review. Res. Reports Transdermal Drug Delivery 2015, 4, 55–69.
    OpenUrlGoogle Scholar
  44. 44.↵
    1. Johnson J. M.,
    2. Ha T.,
    3. Chu S.,
    4. Boxer S. G.
    Early Steps of Supported Bilayer Formation Probed by Single Vesicle Fluorescence Assays. Biophys. J. 2002, 83 (6), 3371–3379.
    OpenUrlPubMedWeb of ScienceGoogle Scholar
  45. 45.↵
    1. Schönherr H.,
    2. Johnson J. M.,
    3. Lenz P.,
    4. Frank C. W.,
    5. Boxer S. G.
    Vesicle Adsorption and Lipid Bilayer Formation on Glass Studied by Atomic Force Microscopy. Langmuir 2004, 20 (26), 11600–11606.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  46. 46.↵
    1. Richter R. P.,
    2. Bérat R.,
    3. Brisson A. R.
    Formation of Solid-Supported Lipid Bilayers: An Integrated View. Langmuir 2006, 22 (8), 3497–3505.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  47. 47.↵
    1. Reimhult E.,
    2. Zäch M.,
    3. Höök F.,
    4. Kasemo B.
    A Multitechnique Study of Liposome Adsorption on Au and Lipid Bilayer Formation on SiO2. Langmuir 2006, 22 (7), 3313–3319.
    OpenUrlPubMedGoogle Scholar
  48. 48.↵
    1. Reimhult E.,
    2. Kasemo B.,
    3. Höök F.
    Rupture Pathway of Phosphatidylcholine Liposomes on Silicon Dioxide. Int. J. Mol. Sci. 2009, 10 (4), 1683–1696.
    OpenUrlPubMedGoogle Scholar
  49. 49.↵
    1. Murrell M. P.,
    2. Voituriez R.,
    3. Joanny J.-F.,
    4. Nassoy P.,
    5. Sykes C.,
    6. Gardel M. L.
    Liposome Adhesion Generates Traction Stress. Nat. Phys. 2014, 10 (2), 163–169.
    OpenUrlGoogle Scholar
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 75 (2)
PDA Journal of Pharmaceutical Science and Technology
Vol. 75, Issue 2
March/April 2021
  • Table of Contents
  • Index by Author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Email Article
Citation Tools
Share
Optimizing the Filtration of Liposomes Using Sterilizing-Grade Filters
Kalliopi Zourna, Aude Iwaniec, Stephen Turner, Nigel B. Jackson, John H. Welsh
PDA Journal of Pharmaceutical Science and Technology Mar 2021, 75 (2) 128-140; DOI: 10.5731/pdajpst.2020.011866
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget

Jump to section

  • Article
    • Abstract
    • 1. Introduction
    • 2. Experimental Methods
    • 3. Results and Discussion
    • 4. Conclusion
    • Conflict of Interest
    • Acknowledgments
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Nitrogen Dioxide sterilization follows log-linear microbial inactivation kinetics using Geobacillus stearothermophilus biological indicators
  • Analysis of Virus Clearance for Biotechnology Manufacturing Processes from Early to Late Phase Development
  • Coring and Fragmentation of Elastomeric Needle Shield in a Pre-Filled Syringe
Show more Research

Similar Articles

Keywords

  • Sterilizing filtration
  • Liposome
  • Microfluidization
  • Polyethersulfone
  • Drug delivery
  • Lipoid S100

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire
Alerts for this Article
Sign In to Email Alerts with your Email Address
Email this Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Optimizing the Filtration of Liposomes Using Sterilizing-Grade Filters
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
6 + 13 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Optimizing the Filtration of Liposomes Using Sterilizing-Grade Filters
Kalliopi Zourna, Aude Iwaniec, Stephen Turner, Nigel B. Jackson, John H. Welsh
PDA Journal of Pharmaceutical Science and Technology Mar 2021, 75 (2) 128-140; DOI: 10.5731/pdajpst.2020.011866

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

We use cookies on this site to enhance your user experience

By clicking any link on this page you are giving your consent for us to set cookies.